Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng d 1 : 2 x + 3 y + 1 = 0
và d 2 : x - y - 2 = 0 Có bao nhiêu phép tịnh tiến biến d 1 thành d 2
A.Vô số
B.4
C.1
D.0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
trong mặt phẳng tọa độ Oxy cho hai đường thẳng:(d):y=2x-3 và (d'):y=(m^2-2)x+m-1
a) vẽ đường thẳng (d) trong mặt phẳng tọa độ
b) tìm tất cả giá trị của m để đường thẳng (d) song song với (d')
a) y = 2x - 3
Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)
Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)
b) ĐKXĐ của (d'): \(m^2-2\ne0\)
\(\Leftrightarrow m\ne\sqrt{2}\) và \(m\ne-\sqrt{2}\)
Để (d) // (d') thì
\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow m=2\) (nhận)
Vậy m = 2 thì (d) // (d')
a) Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) có phương trình 2x-3y+1=0
Lập pt đường thẳng(d') qua M(-1',1)và song song với(d)
b)Trong mặt phẳng hệ tọa độ Oxy,cho elip có pt(E):x\(\frac{x^2}{49}+\frac{y^2}{25}=1\)
tính chu vi,diện tích hình chữ nhật của elip
Trong mặt phẳng Oxy cho parabol ( P ) : y = 1 4 x 2 và đường thẳng d : y = x + 3.
1) Vẽ (P) và d trên cùng một hệ trục tọa độ.
2) Tìm tọa độ giao điểm của (P) và d.
1) Xác định được ít nhất hai điểm phân biệt thuộc đường thẳng d. Chẳng hạn: A ( − 3 ; 0 ) ; B ( 0 ; 3 ) .
Xác định được đỉnh và ít nhất hai điểm thuộc (P) . Chẳng hạn : O ( 0 ; 0 ) ; C ( 6 ; 9 ) ; E ( − 6 ; 9 ) .
Đồ thị
2) Phương trình hoành độ giao điểm: 1 4 x 2 = x + 3 ⇔ 1 4 x 2 − x − 3 = 0 ⇔ x = − 2 hoặc x= 6
Tọa độ giao điểm là D ( − 2 ; 1 ) v à C ( 6 ; 9 ) .
Trong không gian với hệ tọa độ Oxy, cho hai đường thẳng d 1 : x = 2 + t y = 1 − t z = 2 t và d 2 : x = 2 − 2 t y = 3 z = t . Khoảng cách từ điểm M − 2 ; 4 ; − 1 đến mặt phẳng cách đều hai đường thẳng d 1 và d 2 là:
A. 15 15
B. 2 15 15
C. 30 15
D. 2 30 15
Đáp án D
Nhận thấy d 1 ⊥ d 2 . Gọi α là mặt phẳng cách đều d 1 và d 2 nên cả hai đường thẳng đều song song với mặt phẳng α . Khi đó, vector pháp tuyến a → của mặt phẳng α cùng phương với vector u 1 → , u 2 → (với u 1 → , u 2 → lần lượt là các vec tơ chỉ phương của hai đường thẳng d 1 , d 2 ).
+ Chọn a → = 1 ; 5 ; 2 , suy ra phương trình mặt phẳng α có dạng
α : x + 5 y + 2 z + d = 0
Chọn A 2 ; 1 ; 0 và B 2 ; 3 ; 0 lần lượt thuộc đường thẳng d 1 và d 2 , ta có
d A ; α = d B ; β ⇒ d = − 12 ⇒ α : x + 5 y + 2 z − 12 = 0
+ Khoảng cách từ điểm M − 2 ; 4 ; − 1 đến mặt phẳng α : d M ; α = 2 30 15
trong mặt phẳng với hệ tọa độ oxy, cho đường tròn(c) : x^2 + y^2 -2x-2y-3=0 và điểm m(0;2). viết phương trình đường thẳng d qua m và cắt (c) tại hai điểm a,b sao cho ab có độ dìa ngắn nhất
Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng
d 1 : 2x + 3y + 1 = 0 và d 2 : x - y - 2 = 0 Có bao nhiêu phép tịnh tiến biến thành d 2
A. Vô số
B. 4
C. 1
D. 0
Đáp án D
Vì d 1 không song song hoặc trùng với d 2 nên không tồn tại phép tịnh tiến nào biến d 1 thành d 2 .
Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : x2+ y2- 4x -2y -1= 0 và đường thẳng d: x+ y+1= 0. Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến (C) hai tiếp tuyến hợp với nhau góc 900.
Đáp án A
- Do M thuộc d suy ra M( t; -1-t).
Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông
(A; B là 2 tiếp điểm).
Do đó:
- Ta có :
- Do đó : 2t2+ 8= 12
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng (d1): y = -1/3x và (d2): y = 3x-2.
1)Vẽ (d1) và (d2) trên cùng hệ trục.
2) Bằng phép tính tìm tọa độ giao điểm của (d1) và (d2).
3) Cho đường thẳng (d3): y=ax+b. Xác định a và b biết (d3) song song với (d2) và cắt (d1) tại điểm có hoành độ bằng 2.Giup minh voi a!