Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 6 2018 lúc 6:42

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2018 lúc 9:45

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2018 lúc 15:34

Đáp án C

Mặt cầu  (S) có tâm I 1 ; 0 ; 2 , bán kính R=3. Nhận xét thấy S, I, S’ thẳng hàng và S S ' ⊥ A B C D . Khi đó S S ' = 2 R = 6 . Ta có:

V H = V S . A B C D + V S ' . A B C D = 1 3 d S ; A B C D . S A B C D + 1 3 d S ' ; A B C D . S A B C D

= 1 3 d S ; A B C D + d S ' ; A B C D . S A B C D = 1 3 S S ' . S A B C D = 2 S A B C D

Từ giả thiết suy ra ABCD là hình vuông, gọi a là cạnh hình vuông đó.

Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng r và ngoại tiếp hình vuông ABCD.

Suy ra 2 r = A C = a 2 ⇒ r = a 2 2 . Từ d I ; P 2 + r 2 = R 2 .

⇔ r = R 2 − d I ; P 2 = 3 2 − 8 3 2 = 17 3 = a 2 2 ⇔ a = 2 17 3 2

Vậy V H = 2 S A B C D = 2 a 2 = 2. 2 17 3 2 2 = 68 9 .

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 11 2018 lúc 8:00

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 12 2017 lúc 11:45

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 3 2017 lúc 3:13

Đáp án C

Do ABCD là tứ diện đều nên H là trọng tâm tam giác BCD và I trùng với trọng tâm G của tứ diện ABCD. Ta có:

Từ đó ta có:

Vậy đáp án C đúng.

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 1 2017 lúc 2:12

Đáp án đúng : A

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 5 2017 lúc 12:02

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 2 2017 lúc 3:23

Đáp án D

Với tứ diện đều ABCD thì mặt cầu (S) là mặt cầu có tâm trùng với tâm của mặt cầu ngoại tiếp tứ diện ABCD và là trọng tâm của tứ diện đều cạnh a, đồng thời có bán kính R = a 2 4  

Gọi G là trọng tâm của tứ diện ⇒ G A ¯ + G B ¯ + G C ¯ + G D ¯ = 0 ¯  

Ta có: 

T = M A 2 + M B 2 + M C 2 + M D 2 = M G ¯ + G A ¯ 2 + M G ¯ + G B ¯ 2 + M G ¯ + G C ¯ 2 + M G ¯ + G D ¯ 2  

= 4 M G 2 + 2 M G ¯ G A ¯ + G B ¯ + G C ¯ + G D ¯ ⏟ 0 + G A 2 + G B 2 + G C 2 + G D 2 = 4 M G 2 + 4 G A 2  

= 4 a 2 4 2 + 4 a 6 4 2 = 2 a 2  . Vậy T = M A 2 + M B 2 + M C 2 + M D 2 = 2 a 2  

Bình luận (0)