Cho hình chóp S.ABCD có A S B ^ = C S B ^ = 60 ° , A S C ^ = 90 ° , S A = S B = a , S C = 3 a Tính thể tích của khối chóp S.ABCD
A. a 3 2 4
B. a 3 6 18
C. a 3 2 12
D. a 3 6 6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình chóp S.ABCD có đáy là hình bình hành. Hỏi có tất cả bao nhiêu mặt phẳng cách đều 5 điểm S, A, B, C, D ?
A. 2 mặt phẳng.
B. 5 mặt phẳng
C. 1 mặt phẳng
D. 4 mặt phẳng.
Đáp án B
Mặt phẳng cách đều 5 điểm là mặt phẳng mà khoảng cách từ 5 điểm đó đến mặt phẳng là bằng nhau.
Có 5 mặt phẳng thỏa mãn là:
+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SBC .
+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SAD .
+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SAB .
+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SCD .
+ Mặt phẳng đi qua trung điểm của SA,SB,SC,SD.
Trong các phát biểu sau, phát biểu nào đúng?
a) Hình chóp đều S.ABCD có đáy là hình bình hành.
b) Hình chóp đều S.ABCD có đáy là hình thoi, chân đường cao hình chóp là giao điểm của 2 đường chéo hình thoi.
c) Hình chóp đều S.ABCD có đáy là hình vuông, chân đường cao hình chóp là giao điểm của 2 đường chéo hình vuông.
d) Hình chóp đều S.ABCD có đáy là hình vuông, các mặt bên là các tam giác đều chung đỉnh S.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M là một điểm thuộc đoạn SB (M khác S và B). Mặt phẳng ( ADM) cắt hình chóp S.ABCD theo thiết diện là
A. Hình bình hành.
B. Tam giác.
C. Hình chữ nhật.
D. Hình thang.
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm CD. Biết rằng diện tích mặt bên (SBC) bằng 3 a 2 2 . Thể tích của hình chóp S.ABCD bằng:
A. a 3 B. 3 a 3 2
C. 3 a 3 D. 3 2 a 3
Chọn A.
Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật cạnh a, S A ⊥ (A B C D) ,SC tạo với mặt đáy một góc 60 độ và (SAB ) một góc a với sin a = căn 3/ 4 . Tính chiều cao khối chóp.
Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được?
Cho hình chóp tứ giác đều S.ABCD. Số mặt phẳng qua điểm S cách đều các điểm A, B, C, D là
A. 4
B. 2
C. 3
D. 1
Đáp án C
Có 3 mặt phẳng. 2 mặt phẳng là các mặt đi qua điểm S và qua các đường trung trực của AB và AD.1 mặt phẳng qua S và song song với mặt phẳng (ABCD)
Cho hình chóp tứ giác đều S . A B C D . Số mặt phẳng qua điểm S cách đều các điểm A, B, C, D là
A. 4
B. 2
C. 3
D. 1
Đáp án C
Có 3 mặt phẳng. 2 mặt phẳng là các mặt đi qua điểm S và qua các đường trung trực của AB và AD.1 mặt phẳng qua S và song song với mặt phẳng A B C D .
Cho hình chóp tứ giác đều S.ABCD. Số mặt phẳng qua điểm S cách đều các điểm A,B,C,D là:
A. 4
B. 2
C. 3
D. 1
Cho hình chóp tứ giác đều S.ABCD . Số mặt phẳng qua điểm S cách đều các điểm A,B,C,D là:
A. 4
B. 2
C. 3
D. 1
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
A. 2 mặt phẳng
B. 5 mặt phẳng
C. 1 mặt phẳng
D. 4 mặt phẳng