Khai triển ( 2 x + 1 ) 10 = A 0 + A 1 x + A 2 x 2 + . . . + A 10 x 10 , Trong đó A 0 , A 1 , . . . , A 10 là các số thực. Số lớn nhất trong các số A 0 , A 1 , . . . , A 10 là
A. A 10
B. A 7 .
C. A 8 .
D. A 9
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) khai triển (3x+2)^4 2)xét khai triển (x^2+2x)^10 a) tìm số hạng đứng chính giữa b) chứa x^15
cho khai triển (2x+3)10=a0+a1x+a2x2+...+a10x10
a, Tính a0+a1+...+a10
b, Tính a0-a1+a2-a3+a4-...
\(\left(2x+3\right)^{10}=a_0+a_1x+a_2x^2+...+a_{10}x^{10}\)
Thay \(x=1\) vào ta được:
\(5^{10}=a_0+a_1+a_2+...+a_{10}\)
Thay \(x=-1\) vào ta được:
\(\left(-2+3\right)^{10}=a_0-a_1+...+a_{10}=1^{10}=1\)
a) Xét công thức khai triển \({\left( {a + b} \right)^2} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)
i) Liệt kê các số hạng của khai triển trên
ii) Liệt kê các hệ số của khai triển trên
iii) Tính giá trị của \(C_3^0,C_3^1,C_3^2,C_3^3\) (có thể sử dụng máy tính) rồi so sánh với các hệ số trên. Có nhận xét gì?
b) Hoàn thành biến đổi sau đây để tìm công thức khai triển của \({\left( {a + b} \right)^4}\)
\({\left( {a + b} \right)^4} = \left( {a + b} \right){\left( {a + b} \right)^3} = ? = ?{a^4} + ?{a^3}b + ?{a^2}{b^2} + ?a{b^3} + ?{b^4}\)
Tính giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) để viết lại công thức khai triển trên
c) Từ kết quả của câu a) và b), hãy dự đoán công thức khai triển của \({\left( {a + b} \right)^5}\). Tính toán để kiểm tra dự đoán đó.
a)
i) Các số hạng của khai triển trên là: \({a^3},3{a^2}b,3a{b^2},{b^3}\)
ii) Các hệ số của khai triển trên là: \(1;3;3;1\)
iii) Tính các giá trị \(C_3^0,C_3^1,C_3^2,C_3^3\) ta được
\(C_3^0 = 1,C_3^1 = 3,C_3^2 = 3,C_3^3 = 1\)
Các giá trị của \(C_3^0,C_3^1,C_3^2,C_3^3\) bằng với các hệ số của khai triển đã cho
b)
\(\begin{array}{l}{\left( {a + b} \right)^4} = \left( {a + b} \right){\left( {a + b} \right)^3} = \left( {a + b} \right)\left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\end{array}\)
Tính giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) ta được
\(C_4^0 = 1,C_4^1 = 4,C_4^2 = 6,C_4^3 = 4,C_4^4 = 1\)
Vậy ta được khai triển là:
\({\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\)
c)
Dự đoán công thức \({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
Tính lại ta có
\(\begin{array}{l}{\left( {a + b} \right)^5} = {\left( {a + b} \right)^2}{\left( {a + b} \right)^3} = \left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\end{array}\)
Vậy công thức dự đoán là chính xác.
Xài cái này gõ bài đi bạn, thề như này hiểu chết liền á :(
Cho khai triển: (4x+7)6 = a0+a1x+...+a6x6
a) Tìm a5
b) Tính tổng các hệ số trong khai triển đó
a5 là số hạng thứ 6 trg khai triển
-số hạng t6 trg khai triển <=> Tk+1=6 <=>k+1=6 => k=5
vậy a5= C564x6
1.Tìm số nguyên dương bé nhất n sao cho trong khai triển (1+x)n có hai hệ số liên tiếp có tỉ số là 7/5
2. Trong khai triển (x-2)100 =a0 +a1x+ ...+ a100x100. Hệ số a97 là bao nhiêu ?
Giúp mình với 🥰🥺
\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)
Hệ số của 2 số hạng liên tiếp là \(C_n^k\) và \(C_n^{k+1}\)
\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)
\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)
\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)
\(\Rightarrow n_{min}=11\) khi \(k=4\)
2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)
\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)
Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)
Bài 1:
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
Giúp mk vs ạ!!!
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
HELP ME!
Tìm hệ số của x10 trong khai triển (2+3x)n biết n thõa : \(C_{2n+1}^1+C_{2n+1}^2+..........+C^{2n}_{2n+1}=2^{10}-1\)
Xét khai triển
\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+...+C_{2n+1}^{2n}x^{2n}+C_{2n+1}^{2n+1}x^{2n+1}\)
Cho \(x=1\) ta được:
\(2^{2n+1}=C^0_{2n+1}+C_{2n+1}^1+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\)
\(\Leftrightarrow2^{2n+1}=2+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)
\(\Leftrightarrow2^{2n+1}-2=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)
\(\Leftrightarrow2^{10}-1=2^{2n+1}-2\Rightarrow2^{2n+1}=2^{10}+1\)
Không tồn tại n thỏa mãn yêu cầu bài toán (bạn xem lại đề bài)
Xét khai triển (1+x)(1+2x)(1+3x)....(1+2019x) = a0 + a1x + a2x2 + a3x3 +...+ a2019x2019. Tính S = 2a2 + (11 + 22 +...+ 20192)
\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)-1\)
\(=x+\sum\limits^n_{k=2}kx\left(1+x\right)...\left(1+\left(k-1\right)x\right)\)
\(=x+\sum\limits^n_{k=2}kx\left[\left(1+x\right)...\left(1+\left(k-1\right)x\right)-1+1\right]\)
\(=\sum\limits^n_{k=1}kx+\sum\limits^n_{k=2}kx\left[\left(1+x\right)\left(1+2x\right)...\left(1+\left(k-1\right)x\right)-1\right]\)
\(=\sum\limits^n_{k=1}kx+\sum\limits^n_{k=2}kx\left(\sum\limits^{k-1}_{i=1}ix\left(1+x\right)\left(1+2x\right)...\left(1-\left(i-1\right)x\right)\right)\)
Do đó tổng của các hệ số chứa \(x^2\) là: \(\sum\limits^n_{k=2}k\left(\sum\limits^{k-1}_{i=1}i\right)\)
Hay \(a_2=\sum\limits^n_{k=2}k\left(\frac{k\left(k-1\right)}{2}\right)=\sum\limits^n_{k=2}\frac{k^2\left(k-1\right)}{2}\)
Do đó:
\(S=1+\sum\limits^{2019}_{k=2}\frac{k^2\left(k-1\right)}{2}+\sum\limits^{2019}_{k=2}k^2=1+\sum\limits^{2019}_{k=2}\left(\frac{k^2\left(k-1\right)}{2}+k^2\right)\)
\(=1+\sum\limits^{2019}_{k=2}\left(\frac{k^2\left(k+1\right)}{2}\right)\)