Những câu hỏi liên quan
H24
Xem chi tiết
TA
Xem chi tiết
TM
Xem chi tiết
TM
24 tháng 7 2019 lúc 22:48

Cái này không LATEX đc, đề là:

Tìm tất cả số nguyên dương n thỏa mãn:

\2^n+n|8^n+n\

Bình luận (0)
DN
Xem chi tiết
LA
Xem chi tiết
LP
11 tháng 5 2022 lúc 5:57

Đặt \(\left\{{}\begin{matrix}n-5=a^3\left(1\right)\\n+2=b^3\left(2\right)\end{matrix}\right.\) \(\left(a,b\inℤ;a< b\right)\)

\(\left(1\right)\Leftrightarrow n=a^3+5\)

Thay vào (2), ta có \(a^3+5+2=b^3\Leftrightarrow b^3-a^3=7\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)=7\)

Vì \(a< b\Leftrightarrow b-a>0\), mà \(\left(b-a\right)\left(a^2+ab+b^2\right)=7>0\)\(\Rightarrow a^2+ab+b^2>0\)

Ta chỉ xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}b-a=1\\a^2+ab+b^2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^2+a\left(a+1\right)+\left(a+1\right)^2=7\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+a+a^2+2a+1=7\)\(\Leftrightarrow3a^2+3a-6=0\)\(\Leftrightarrow a^2+a-2=0\)\(\Leftrightarrow a^2-a+2a-2=0\)\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)=0\)\(\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-2\end{matrix}\right.\) (nhận)

Với \(a=1\) thì \(b=a+1=1+1=2\) (nhận)  từ đó \(n-5=a^3=1^3=1\Rightarrow n=6\)

Thử lại: \(n+2=6+2=8=2^3=b^3\) (nhận)

TH2: \(\left\{{}\begin{matrix}b-a=7\\a^2+ab+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+7\\a^2+a\left(a+7\right)+\left(a+7\right)^2=1\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+7a+a^2+14a+49=1\)\(\Leftrightarrow3a^2+21a+48=0\)\(\Leftrightarrow a^2+7a+16=0\)\(\Leftrightarrow4a^2+28a+64=0\)\(\Leftrightarrow\left[\left(2a\right)^2+2.2a.7+7^2\right]+15=0\)\(\Leftrightarrow\left(2a+7\right)^2+15=0\)\(\Leftrightarrow\left(2a+7\right)^2=-15\) (vô lí)

Vậy ta loại TH2

Do đó để \(n-5\) và \(n+2\) đều là lập phương của 1 số nguyên thì \(n=6\)

Bình luận (0)
DQ
Xem chi tiết
H24
21 tháng 6 2017 lúc 9:33

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

Bình luận (0)
B1
23 tháng 8 2017 lúc 22:01

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

Bình luận (0)
ND
Xem chi tiết
TT
Xem chi tiết
DT
25 tháng 12 2023 lúc 16:50

a) A=4n-5/n+2 = 4(n+2)-13/n+2

= 4 - 13/n+2

Để A có giá trị nguyên

=> 13/n+2 đạt giá trị nguyên

=> 13 chia hết cho (n+2)

=> n+2 thuộc Ư(13)={±1;±13}

Do n là số nguyên dương => n+2 ≥ 3 và n+2 nguyên

Hay n+2 =13

=> n=11

Vậy n=11 là giá trị nguyên dương thỏa mãn đề.

Bình luận (0)
NH
25 tháng 12 2023 lúc 16:52

A = \(\dfrac{4n-5}{n+2}\)  (đk n \(\ne\) - 2; n \(\in\) Z)

\(\in\) Z ⇔ 4n - 5 ⋮ n + 2

      4n + 8 - 13 ⋮ n + 2

  4.(n + 2) - 13 ⋮ n + 2

                   13 ⋮ n + 2

n + 2 \(\in\) Ư(13) = {-13; -1; 1; 13}

Lập bảng ta có:

n + 2  -13 -1 1 13
n -15 -3 -1 11

Theo bảng trên ta có: n \(\in\) {-15; -3; -1; 11}

Vì n nguyên dương nên n = 11

 

 

 

Bình luận (0)
DT
25 tháng 12 2023 lúc 16:55

B = 7n+3/n-3 = 7(n-3)+24/n-3

= 7 + 24/n-3

Để B đạt giá trị nguyên

=> 24/n-3 cũng phải đạt giá trị nguyên

=> 24 chia hết cho (n-3)

=> n-3 thuộc Ư(24)={±1;±2;±3;±4;±6;±8;±12;±24}

Do n nguyên dương => n-3≥-2 và n-3 nguyên

Hay n-3 thuộc {-2;-1;1;2;3;4;6;8;12;24}

=> n thuộc {1;2;4;5;6;7;9;11;15;27}

Bình luận (0)
SN
Xem chi tiết
DD
Xem chi tiết
XO
17 tháng 7 2021 lúc 11:17

Ta có 8n - 1 =(8 - 1)(8n - 1 + 8n - 2  + .... + 1) = 7(8n - 1 + 8n - 2 + .... + 1) 

=> 8n - 1 là số nguyên tố khi 8n - 1 + 8n - 2 + .... + 1 = 1

Khi đó 8n - 1 = 7

<=> 8n = 8

<=> n = 1

Vậy n = 1 thì 8n - 1 là số nguyên tố 

Bình luận (0)
 Khách vãng lai đã xóa