tìm số nguyên n biết 3n-7 chia hết cho 4n-1
Giải cách trình bày
1.Tìm n thuộc N,biết:
a) 15 chia hết n+1
b) 3n+5 chia hết n+1
c) n+7 chia hết n+1
d) 4n+7 chia hết n-2
e) 5n+8 chia hết n-3
f) 6n+8 chia hết 3n+1
Giải lần lượt cho mình nha!
Ai làm đúng trình bày ra rõ ràng mình tick cho!
Vì quá nhiều nên mk làm sơ sơ thôi
a) 15 chia hết cho n+1
=> n+1 thuộc Ư(15)={-15;-14;...14;15}
=> n thuộc { -16;-15;...;13;14}
b) 3n+5 chia hết cho n+1
=> 3n+3+2=3(n+1)+2 chia hết cho n+1
Do 3(n+1) chia hết cho n+1 => 2 chia hết cho 1 ( đến đây làm tương tự câu a)
c) n+7 chia hết cho n+1
=> (n+1)+6 chia hết cho n+1
=> 6 chia hết cho n+1 ( cũng làm tương tự)
d) 4n+7 chia hêt cho n-2
=> (4n-8)+15 chia hết cho n-2
=> 4(n-2) + 15 chia hết cho n-2
=> n-2 thuộc Ư(15)={-15;-14;...;14;15}
=> n thuộc {-13;-14;...;16;17}
e) 5n+8 chia hết cho n-3
=> (5n-15)+23 chia hết cho n-3
=> 5(n-3)+23 chia hết cho n-3 ( đến đây thì giống câu trên nhé)
f) 6n+8 chia hết cho 3n+1
=> 2(3n+1)+6 chia hết cho 3n+1
=> 3n+1 thuộc Ư(6) ( đến đây bạn tự làm giống n~ câu trên nhé
a) Vì 15 chia hết cho n + 1
=> n + 1 thuộc ước của 15
n + 1 thuộc { 1 ; 3 ; 5 ; 15 }
=> n thuộc { 0 ; 2 ; 4 ; 14 }
b) Ta có : 3n + 5 = 3n + 3 + 2
= 3n + 3 . 1 + 2
= 3 ( n + 1 ) + 2
Vì 3 ( n + 1 ) + 2 chia hết cho n + 1
n + 1 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc ước của 2
=> n + 1 thuộc { 1 ; 2 }
=> n thuộc { 0 ; 1 }
Tìm số nguyên x biết: x2 - x + 7 chia hết cho x - 1
Giải chi tiết hộ tớ với ;-;
\(\Leftrightarrow x\left(x-1\right)+7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Tìm số nguyên n biết rằng n – 4 chia hết cho n -1
giải chi tiết cho mik nhé,mik cảm ơn
\(\Leftrightarrow n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
tìm số nguyên n sao cho
3n + 2 chia hết cho n - 1
trình bày ra lun nhé m .n
vd j pn mk ko pk lm nên ms nhờ mý pn lm zùm mà
các bạn giải giúp mik với ạ mik đang cần gấp
Tìm n thuộc Z biết:
a) -7n + 3 chia hết cho n -1
b) 4n + 5 chia hết cho 4-n
c) 3n+4 chia hết cho 2n +1
d) 4n + 7 chia hết cho 3n + 1
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
Tìm số nguyên n sao cho :
a, n2+ 2n - 7 chia hết cho n - 2
b, 3n chia hết cho 1 - 4n
c 3n + 4 chia hết cho 11
Giải theo lớp 6 nha !!!
B1.Tìm số IN nhỏ nhất biết số đó chia 5 dư 3, chia 7 dư 4
B2. Tìm số IN n sao cho:
a, 4n-5 chia hết cho 13
b, 25n+3 chia hết cho 53
B3. Tìm số IN n để 9n+24 và 3n+4 là các số nguyên tố cùng nhau
Tìm số nguyên n sao cho :
a ) 4n - 5 : 2n -1
b) 2- 4n chia hết cho n-1
c) n^2 + 3n + 1 : n + 1
D) 3 n + 5 chia hết cho n -2
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)