Nếu các số hữu tỉ a,b thỏa mãn ∫ 0 1 a e x + b d x = e + 2 thì giá trị của biểu thức a+b bằng
A. 4
B. 5
C. 6
D. 3
Nếu các số hữu tỉ a, b thỏa mãn ∫ 0 1 a e x + b d x = e + 2 thì giá trị của biểu thức a + b bằng
A. 4
B. 6
C. 5
D. 3
cho các số hữu tỉ x,y,z khác 0 thỏa mãn ĐK x+y+z=0
c/ m: A=1/x²+1/y²+1/z² là bình phương của một số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Ta có: \(a=b+c\Rightarrow c=a-b\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)
=> Là một số hữu tỉ do a,b,c là số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn a + b + c = abc . là minh rằng biểu thức Q = (a ^ 2 + 1)(b ^ 2 + 1)(c ^ 2 + 1) là bình phương của một số hữu tỉ
Lời giải:
$a+b+c=abc$
$\Rightarrow a(a+b+c)=a^2bc$
$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$
$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:
$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.
Ta có đpcm.
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Cho các sô hữu tỉ x, y, z thỏa mãn điều kiện: x+y+z=0
CMR: A=1/x^2+1/y^2+1/z^2 là bình phương của 1 số hữu tỉ
A=\(\frac{x^2y^2+x^2z^2+y^2z^2}{x^2y^2z^2}\)
Ta có:\(x^2y^2+x^2z^2+y^2z^2=\left(xy+yz+zx\right)^2-2\left(xyz\right)\left(x+y+z\right)\)
\(=\left(xy+yz+zx\right)^2\)(do x+y+z=0)
Do đó A=\(\frac{\left(xy+yz+zx\right)^2}{\left(xyz\right)^2}=\left[\frac{\left(xy+yz+zx\right)}{xyz}\right]^2\)
Nên A là số chính phương(ĐCCM)
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn a=b+c. Chứng min rằng √1/a2 + 1/b2 +1/c2 là 1 số hữu tỉ.
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ