Những câu hỏi liên quan
Xem chi tiết
NT
3 tháng 7 2021 lúc 13:03

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

Bình luận (1)
H24
3 tháng 7 2021 lúc 13:18

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

Bình luận (1)
CB
Xem chi tiết
H24
23 tháng 1 2017 lúc 21:18

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

Bình luận (0)
H24
23 tháng 1 2017 lúc 21:29

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

Bình luận (0)
C1
Xem chi tiết
HM
20 tháng 9 2023 lúc 20:35

Đề bài yêu cầu gì vậy em.

Bình luận (0)
TM
Xem chi tiết
NH
15 tháng 10 2017 lúc 8:59

làm giúp mk bài này nhá                                                                                                              0+1+2+...+2017  có bao nhiêu số hạng

                                                                                                          

Bình luận (0)
PB
Xem chi tiết
LC
2 tháng 10 2019 lúc 21:00

\(x^2-y^2=81\left(1\right)\)

Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được:

\(\left(5k\right)^2-\left(4k\right)^2=81\)

\(\Leftrightarrow25k^2-16k^2=81\)

\(\Leftrightarrow9k^2=81\)

\(\Leftrightarrow k^2=9\)

\(\Leftrightarrow k=\pm3\)

TH1: Thay k=3 vào (2) ta được:

\(\hept{\begin{cases}x=3.5=15\\y=4.3=12\end{cases}}\)

TH2: Thay k=-3 vào (2) ta được:

\(\hept{\begin{cases}x=-3.5=-15\\y=-3.4=-12\end{cases}}\)

Vậy \(\left(x,y\right)=\left\{\left(15;12\right);\left(-15;-12\right)\right\}\)

Bình luận (0)
VI

Ta có : \(\frac{x}{5}=\frac{x^2}{5^2}=\frac{x^2}{25}\)            \(\frac{y}{4}=\frac{y^2}{4^2}=\frac{y^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x^2-y^2}{25-16}=\frac{81}{9}=9\)    \(\left(x;y\ne0\right)\)

Ta có : \(9=3^2\)

\(\Rightarrow x=5.3=15\)

\(\Rightarrow y=3.4=12\)

Vậy \(x=15;y=12\)

Bình luận (0)
LC
2 tháng 10 2019 lúc 21:07

Vũ Cao Minh ( Cool Teen )

Thiếu

Bình luận (0)
TN
Xem chi tiết
TN
25 tháng 9 2018 lúc 11:48

làm hộ mik cho

Bình luận (0)
VD
Xem chi tiết
PA
Xem chi tiết
EC
1 tháng 10 2019 lúc 14:45

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

Bình luận (0)
EC
1 tháng 10 2019 lúc 14:49

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

Bình luận (0)
VA
Xem chi tiết
TC
6 tháng 8 2017 lúc 20:20

Dựa vào tỉ số bằng nhau ta đc:

a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

       Áp dụng t/c dãy tỉ số bằng nhau ta đc:

             \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)

       Các câu kia tg tự nha

Bình luận (0)
II
6 tháng 8 2017 lúc 20:32

c) 

\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5 

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)

\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)

\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)

Vậy...

Bình luận (0)
DP
6 tháng 8 2017 lúc 20:40

b, x : y : z : t = 2 : 3 : 4 : 5 => x/2 = y/3 = z/4 = t/5 

Đặt : x/2 = y/3 = z/4 = t/5 = k => x = 2k ; y = 3k ; z = 4k ; t = 5k

x + y + z + t = -42 => 2k + 3k + 4k + 5k = -42 => 14k = -42 => k = -3 

Với k = -3 => x = 2.(-3) = -6 ; y = 3.(-3) = -9 ; z = 4.(-3) = -12 ; t = 5.(-3) = -15 

Vậy ... 

d,Đặt :  x/3 = y/2 = z/5 = k => x = 3k ; y = 2k ; z = 5k 

x - y + z = -10,2 => 3k - 2k + 5k = -10,2 => 6k = -10,2 => k = -1,7 

Với k = -1,7 => x = 3.(-1,7) = -5,1 ; y = 2 . (-1,7) = -3,4 ; z = 5.(-1,7) = -8,5 

Vậy ....

Bình luận (0)