Những câu hỏi liên quan
NP
Xem chi tiết
H24
Xem chi tiết
AH
3 tháng 2 2024 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Bình luận (0)
AH
3 tháng 2 2024 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Bình luận (0)
AH
3 tháng 2 2024 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Bình luận (0)
OO
Xem chi tiết
TL
19 tháng 1 2017 lúc 11:57

Bắt quả tang dũng nhá!~

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
TP
7 tháng 8 2018 lúc 16:33

Ta có | x + 1 | \(\ge\)\(\forall\)x

=> 5 . | x + 1 | \(\ge\)\(\forall\)x

=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy, GTNN của A = 2018 khi và chỉ khi x = -1

Bình luận (0)
DC
7 tháng 8 2018 lúc 16:35

ta có :|x+1| >=0

  =>  5|x+1|>=0

=>  2018+5|x+1|>= 2018

dấu = xảy ra khi  |x+1|=0

                          x+1=0

                          x=-1

 vay gtnn cua bieu thuc tren la 2018  khi x=-1

Bình luận (0)
BH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NH
16 tháng 7 2021 lúc 15:29

Với mọi x ta có :

\(\left|x+5\right|\ge0\)

\(\Leftrightarrow\left|x+5\right|+5\ge0\)

\(\Leftrightarrow A\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5\)

Vậy..

Bình luận (1)
NT
16 tháng 7 2021 lúc 15:30

undefined

Bình luận (0)
PK
16 tháng 7 2021 lúc 15:37

Với mọi giá trị của x, ta có:

|x+5|≥0

⇔|x+5|+5≥0

⇔|x+5|+5≥5

Hay A≥5 Với mọi giá trị của x

Để A=5 thì:

|x+5|+5=5

⇔|x+5|   =0

⇔x+5     =0

⇔x         =\(-5\)

Vậy Amax=5⇔x=-5

Bình luận (0)