Tìm nguyên hàm F(x) của hàm số f(x)=sin2x, biết F π 6 = 0
Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 1 + sin 2 x với x ∈ R { - π 4 + k π , k ∈ } . Biết F(0)=1,F( π )=0, tính giá trị biểu thức P = F ( - π 12 ) - F ( 11 π 12 )
Câu 1 : Tính thể tích vật thể tròn xoay khi quay hình phẳng (H) giới hạn bởi các đường y = x3 , y = 0, x=0, x=1 quanh trục hoành
Câu 2 : Biết F(x) là một nguyên hàm của hàm f(x) = sin2x và F(π/4) = 1. Tính F(π/6)
1.
\(V=\pi\int\limits^1_0x^6dx=\dfrac{\pi x^7}{7}|^1_0=\dfrac{\pi}{7}\)
2.
\(F\left(x\right)=\int sin2xdx=-\dfrac{1}{2}cos2x+C\)
\(f\left(\dfrac{\pi}{4}\right)=1\Leftrightarrow-\dfrac{1}{2}cos\dfrac{\pi}{2}+C=1\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\dfrac{1}{2}cos2x+1\Rightarrow F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}\)
Tìm nguyên hàm F(x) của hàm số f x = sin 2 x , biết F π 6 = 0
A. F x = − 1 2 cos 2 x + π 6
B. F x = cos 2 x − 1 4
C. F x = sin 2 x − 1 4
D. F x = − 1 2 cos 2 x
Biết F(x) là một nguyên hàm của hàm số f(x)=sin2 x+cosx. Giá trị F(π/2)-F(0) bằng
A. 2.
B. 1
C. -1
D. 4.
Cho hàm số F(x) là một nguyên hàm của hàm số f ( x ) = 2 cos x - 1 sin 2 x trên khoảng 0 ; π . Biết rằng giá trị lớn nhất của F(x) trên khoảng 0 ; π là 3 . Chọn mệnh đề đúng trong các mệnh đề sau?
Cho f ( x ) = 4 m π + sin 2 x .Tìm để nguyên hàm của hàm số thỏa mãn F(0)=1 và F π 4 = π 8
A. -3/4
B. 3/4
C. -4/3
D. 4/3
Vì F(0) = 1 nên C =1
F π 4 = π 8 nên tính được m = -3/4
Chọn A.
Một nguyên hàm F(x) của hàm số
f ( x ) = 2 x 3 = 3 x 2 + 1 - sin 2 x khi F(0)=1 là:
A. F x = 2 x 4 4 + 3 x 3 3 + x + 1 2 . cos 2 x + 1 2
B. F x = 2 x 4 4 - 3 x 3 3 + x + 1 2 . cos 2 x + 1 2
C. F x = 2 x 4 4 - 3 x 3 3 - x + 1 2 . cos 2 x + 1 2
D. F x = 2 x 4 4 - 3 x 3 3 + x + 1 2 . cos 2 x - 1 2
Một nguyên hàm F(x) của hàm số f ( x ) = 2 x 3 - 3 x 2 + 1 - sin 2 x khi F(0)=1 là:
Biết F(x) là một nguyên hàm của hàm số f(x) = sin3x.cosx và F 0 = π . Tìm F π 2 .
A. F π 2 = - 1 4 + π
B. F π 2 = 1 4 + π
C. F π 2 = - π
D. F π 2 = π