Tính tổng 100 số hạng đầu tiên của dãy:1/6+1/66+1/176+1/336+...
Tính tổng 100 số hạng đầu tiên của dãy:1/6+1/66+1/176+1/336+...
Tính: S=1/6+1/66+1/176+1/336+...
1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế
Số hạng thứ 100 là: 1 +5 x(100-1)=496.
Phân số thứ 100 là:1/496 x501
Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501
Nhân 2 vế S với 5
Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501
S= 100/501
tổng 100 số hạng đầu tiên dãy sau là .... (1/6);(1/66);(1/176);(1/336)
Tính tổng 100 số hạng đầu tiên của dãy :
a, 1/6 ; 1/66 ; 1/176 ; 1/336 ; ...........
b, 1/120 ; 1/330 ; 1/638
Tính tổng của 100 số hạng đầu tiên của dãy các phân số sau :
\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Ta gọi số thứ 100 là \(\frac{1}{x}\)
Ta có tổng :
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{x}\)
= \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{x}\)
Ta có công thức : \(U_n=U_1+\left(n-1\right).d\)
Vậy ta áp dụng : \(U_{100}=1+\left(100-1\right).5=496\)
=) Số thứ 100 là \(\frac{1}{496.\left(496+5\right)}=\frac{1}{496.501}\)
Ta có tổng của 100 số hạng đầu tiên là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
= \(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
= \(1-\frac{1}{501}=\frac{500}{501}\)
Vậy tổng của 100 số hạng đầu tiên của dãy phân số trên là : \(\frac{500}{501}\)
Ta nhận thấy:
\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336}\) = \(\frac{1}{1\times6};\frac{1}{6\times11};\frac{1}{11\times16};\frac{1}{16\times21}\)
PS thứ 1 có TS thứ nhất của MS là: 1
PS thứ 2 có TS thứ nhất của MS là: 6
PS thứ 3 có TS thứ nhất của MS là: 11
PS thứ 4 có TS thứ nhất của MS là: 16
Vậy PS thứ 100 có TS thứ nhất của MS là: 1 + (100 - 1) x 5 = 496
Vậy TS thứ hai của MS là: 501
Ta có:
\(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+....+\frac{1}{496\times501}\)
\(1-\frac{1}{501}=\frac{500}{501}\)
Chúc bạn học tốt !!!
Tính tổng 100 số đầu tiên của dãy số sau: 1/6:1/66:1/176:1/336...
100/501
**** cho mình nhé bạn Lê Hải Dương
1/1.6 +1/6.11+1/11.16+....
số thứ 100 có dạng 1/(496.501)
do vậy tổngtrên bằng 1/5 (1/1-1/501) = 100/501
**** mình nha bạn
Tính tổng 50 số hạng đầu tiên của dãy 1/66+1/666+1/176+1/336+...?
Tìm tổng của 100 số hạng đầu tiên của dãy sau:\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336};...\)
tính nhanh tổng của 100 số hạng đầu tiên của dãy
a) 1.3 ; 3.5 ; 5.7 ; 7.9 ; ...
b) 1/6 ; 1/66 ; 1/176 ;1/336 ;...
c) 1/2 ; 1/6 ; 1/12 ; 1/20 ;...
Tính tổng của 100 số hạng đầu tiên của dãy sau: \(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336};....\)Giúp mình với nhé mai đi học rồi
Các mẫu các số hạng là tích của 2 số cách nhau 5 đơn vị (6 = 1.6 ; 66 = 6.11 ; 176 = 11.16 ; 336 = 16.21;...).
Cho dãy gồm các thừa số I của các tích bên : 1 ; 6 ; 11 ; 16 ; ...Số hạng thứ 100 của dãy này là : 1 + 5(100 - 1) = 496
Vậy tổng của 100 số hạng đầu tiên của dãy đã cho là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{491.496}+\frac{1}{496.501}\)\(=\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+..+\frac{5}{491.496}+\frac{5}{496.501}\right):5\)
\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\right):5\)
\(=\left(1-\frac{1}{501}\right):5=\frac{500}{501}:5=\frac{100}{501}\)