Những câu hỏi liên quan
PB
Xem chi tiết
CT
8 tháng 4 2018 lúc 8:55

Chọn B

Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.

IA = 6 < R nên A nằm trong mặt cầu.

Gọi r là bán kính đường tròn thiết diện, ta có 

Trong đó h là khoảng cách từ I đến (P).

Diện tích thiết diện là

Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó  là véc tơ pháp tuyến của (P).

Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 5 2019 lúc 8:47

Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 7 2018 lúc 14:40

Đáp án đúng : D

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 11 2017 lúc 3:09

Đáp án đúng : D

Bình luận (0)
TD
Xem chi tiết
H24
3 tháng 9 2023 lúc 8:02

Để tìm phương trình mặt phẳng (P) và tính bán kính đường tròn giao tuyến, ta cần tìm điểm giao giữa mặt cầu (S) và đường thẳng Δ. Đầu tiên, ta thay đổi phương trình đường thẳng Δ từ phương trình chính tắc sang phương trình tham số.

Phương trình tham số của đường thẳng Δ là: x = t y = 1 + t z = 1 + 2t

Tiếp theo, ta thay các giá trị x, y, z vào phương trình mặt cầu (S) để tìm điểm giao: (t)2 + (1 + t + 1)2 + (1 + 2t - 2)2 = 10 t2 + (t + 2)2 + (2t - 1)2 = 10 t2 + t2 + 4t + 4 + 4t2 - 4t + 1 - 10 = 0 6t2 + 4t - 5 = 0

Giải phương trình trên, ta tìm được t = 1/2 và t = -5/6. Thay t vào phương trình tham số của Δ, ta có các điểm giao là: Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)

Tiếp theo, ta tìm phương trình mặt phẳng (P) đi qua hai điểm giao này. Sử dụng công thức phương trình mặt phẳng đi qua hai điểm: (x - x1)(y2 - y1) - (y - y1)(x2 - x1) = 0

Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)

Thay các giá trị vào công thức, ta có: (x - 1/2)((1/6) - (3/2)) - (y - 3/2)((-5/6) - (1/2)) + (z - 5/2)((-1/6) - (3/2)) = 0 -2x + 2y - z + 4 = 0

Vậy phương trình mặt phẳng (P) là: -2x + 2y - z + 4 = 0.

Tiếp theo, để tính bán kính đường tròn giao tuyến, ta tính khoảng cách từ tâm mặt cầu đến mặt phẳng (P). Khoảng cách này chính bằng bán kính đường tròn giao tuyến.

Đặt điểm A là tâm mặt cầu (x0, y0, z0) = (0, -1, 2). Khoảng cách từ A đến mặt phẳng (P) được tính bằng công thức: d = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)

Thay các giá trị vào công thức, ta có: d = |(0)(-2) + (-1)(2) + (2)(-1) + 4| / sqrt((-2)^2 + 2^2 + (-1)^2) d = 5 / sqrt(9) d = 5/3

Vậy bán kính đường tròn giao tuyến là 5/3.

Vậy đáp án đúng là: (P): -2x + 2y - z + 4 = 0; r = 5/3

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 11 2017 lúc 10:16

Đáp án đúng : B

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 11 2019 lúc 16:09

Chọn đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 3 2018 lúc 12:12

Bình luận (0)
MV
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 4 2019 lúc 8:31

Đáp án là A.

+ Mặt phẳng chứa Ox có dạng  B y + C z = 0  

+ Do mặt cầu tiếp xúc với mặt phẳng nên:

2 B − C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3

Vậy mặt phẳng cần tìm 4 y + 3 z = 0

Bình luận (0)