Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 5 2019 lúc 9:59

- Cách tìm tiệm cận ngang:

+ Tính các giới hạn Giải bài 3 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

+ Nếu Giải bài 3 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 hoặc Giải bài 3 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 thì y = y o  là tiệm cận ngang của đồ thị hàm số.

- Cách tìm tiệm cận đứng:

Đường thẳng x = x o  là tiệm cận đứng của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

Giải bài 3 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 1 2024 lúc 8:53

a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)

=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)

Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)

=>-1,5m=3

=>m=-2

b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)

=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)

Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2

=>m=2

c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)

=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)

=>2/b=2

=>b=1

=>\(y=\dfrac{ax+1}{x-2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)

=>a=3

 

 

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 1 2019 lúc 7:34

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 10 2017 lúc 13:26

Giả sử M( x o ;  y o ) ∈ (C). Gọi  d 1  là khoảng cách từ M đến tiệm cận đứng và  d 2  là khoảng cách từ M đến tiệm cận ngang, ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ  x o = 3 + 5 hoặc  x o  = 3 -  5

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 10 2018 lúc 12:48

Chọn C.

Hàm số có tập xác định là 

Ta có 

=> y = -2  là đường tiệm cận ngang của đồ thị hàm số đã cho.

Mặt khác, 

Với mọi x > 0 ta có 

=> x = 0 là đường tiệm cận đứng của đồ thị hàm số đã cho.

Vậy hàm số đã cho có 2 đường tiệm cận.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 7 2019 lúc 9:14

Đáp án là C

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 9 2019 lúc 13:21

Phương pháp:

Dựa vào các tính chất của đồ thị hàm số mũ và hàm số logarit.

Cách giải:

Cả 4 phát biểu đều đúng
Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2017 lúc 9:23

Đáp án A

Đồ thị hàm số có hai tiệm cận đứng là x=1 và x=3.

Đồ thị hàm số có một tiệm cận ngang là y=0. 

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 6 2019 lúc 17:16

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 11 2018 lúc 9:48

Đáp án B.

Phương pháp :

Nếu  l i m x → + ∞ y = a hoặc  l i m x → + ∞ y = a => y = a là đường TCN của đồ thị hàm số

Nếu  l i m x → x 0 y = ∞ ⇒ x = x 0  là đường TCĐ của đồ thị hàm số

Cách giải : Dễ thấy đồ thị hàm số có 1 đường TCN là y = 0 và 2 đường TCĐ là x = 1; x = 3

Vậy n = 3

Bình luận (0)