Có bao nhiêu giá trị nguyên của tham số m để phương trình log 2 4 x - m = x + 1 có đúng hai nghiệm phân biệt?
A. 0
B. 3
C. 1
D. 2
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Đặt \(\left|x\right|=t\ge0\)
\(\Rightarrow t^2-2t+1-m=0\) (1)
Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t
Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)
có bao nhiêu giá trị nguyên của m để phương trình \(\left(x-1\right)\log\left(e^{-x}+m\right)=x-2\) có 2 nghiệm thực phân biêt
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Cho phương trình m. sin x + 4. cos x = 2m - 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
A. 4
B. 7.
C. 6.
D. 5
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) ko phải là nghiệm
- Với \(x>0\) chia 2 vế cho \(x\) ta được:
\(\dfrac{x^2+4}{x}+2-m=4\sqrt{\dfrac{x^2+4}{x}}\)
Đặt \(\sqrt{\dfrac{x^2+4}{x}}=t\ge2\)
\(\Rightarrow t^2-4t+2=m\)
Xét hàm \(f\left(t\right)=t^2-4t+2\) với \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=-2\Rightarrow m\ge-2\)
Có \(2018-\left(-2\right)+1=2021\) giá trị nguyên của m
Có bao nhiêu giá trị nguyên của tham số m để phương trình
\(\sqrt{x+2}+\sqrt{2-x}+2\sqrt{4-x^2}+2m+3=0\) có nghiệm
ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)
Phương trình đã cho trở thành:
\(t+t^2-4+2m+3=0\)
\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)
Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)
\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)
\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)
Cho phương trình log 2 2 x 2 - x + m x 2 + 1 = x 2 + x + 4 - m . Có bao nhiêu giá trị nguyên của tham số m ϵ [1;10] để phương trình có hai nghiệm trái dấu.
A. 7
B. 8
C. 6
D. 5
Cho phương trình log 3 2 x 2 - x + m x 2 + 1 = x 2 + x + 4 - m . Có bao nhiêu giá trị nguyên của tham số m Î [1; 10] để phương trình có hai nghiệm trái dấu
A. 7
B. 8
C. 6
D. 5
Cho phương trình 4 6 + x - x 2 - 3 x = m x + 2 + 2 3 - x với m là tham số. Hỏi có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
A. 10
B. 9
C. 11
D. 8
Chọn đáp án A
Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.