Những câu hỏi liên quan
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 11:16

a) Thay tọa độ điểm O, A, B vào F(x;y) ta được:

F(0;0)=2.0+3.0=0

F(150;0)=2.150+3.0=300

F(0;150)=2.0+3.150=450.

b) Lấy một điểm bất kì trong miền tam giác OAB.

Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(x \ge 0\).

Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(y \ge 0\).

Vậy \(x \ge 0\) và \(y \ge 0\).

=> \(F\left( {x;y} \right) = 2x + 3y \ge 2.0 + 3.0 = 0\)

Vậy giá trị nhỏ nhất của F(x;y) trên miền OAB là 0.

c) Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(x + y \le 150\)

Như vậy với mỗi điểm trong miền tam giác OAB thì đều có tổng \(x + y \le 150\)

Quan sát miền OAB ta thấy điểm B(0;150) là điểm có tung độ lớn nhất nên mọi điểm (x;y) thuộc miền OAB đều có \(y \le 150\).

Vậy ta có: \(F\left( {x;y} \right) = 2x + 3y\)\( = 2.\left( {x + y} \right) + y\)\( \le 2.150 + 150 = 450\)

Dấu “=” xảy ra khi x+y=150 và y=150. Hay x=0, y=150.

Giá trị lớn nhất trên miền OAB là 450 tại điểm B.

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 1 2017 lúc 18:17

Chọn A.

Từ giả thiết, suy ra  f a - x = 1 f x

Đặt t=a-x suy ra dt=-dx . Đổi cận:  x = 0 → t = a x = a → t = 0

 

Khi đó

 

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2018 lúc 7:57

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2017 lúc 13:45

Xét hàm số g(x) = f(x) − f(x + 0,5)

Ta có

g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)

g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)

(vì theo giả thiết f(0) = f(1)).

Do đó,

g ( 0 ) . g ( 0 , 5 )   =   [ f ( 0 )   −   f ( 0 , 5 ) ] . [ f ( 0 , 5 )   −   f ( 0 ) ]   =   − f ( 0 )   −   f ( 0 , 5 )   2   ≤   0 .

- Nếu g(0).g(0,5) = 0 thì x = 0 hay x=0,5 là nghiệm của phương trình g(x) = 0

- Nếu g(0).g(0,5) < 0 (1)

Vì y = f(x) và y = f(x + 0,5) đều liên tục trên đoạn [0; 1] nên hàm số y = g(x) cũng liên tục trên [0; 1] và do đó nó liên tục trên [0; 0,5] (2)

Từ (1) và (2) suy ra phương trình g(x) = 0 có ít nhất một nghiệm trong khoảng

Kết luận : Phương trình g(x) = 0 hay f(x) − f(x + 0,5) = 0 luôn có nghiệm trong đoạn (0;0,5)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 8 2018 lúc 15:54

Bình luận (0)
NH
Xem chi tiết
DT
6 tháng 3 2019 lúc 13:08

Đáp án đúng : D

Bình luận (0)
HV
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 10 2019 lúc 8:27

a) Đúng

b) Đúng

c) Sai

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 1 2018 lúc 4:20

Bình luận (0)