Những câu hỏi liên quan
NA
Xem chi tiết
PD
Xem chi tiết
NT
Xem chi tiết
NL
11 tháng 11 2021 lúc 21:44

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 9 2019 lúc 12:47

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 5 2018 lúc 5:02

Chọn đáp án A

Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.

Bình luận (0)
NT
Xem chi tiết
PB
Xem chi tiết
CT
15 tháng 4 2019 lúc 9:55

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 8 2017 lúc 10:03

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 8 2018 lúc 15:30

Đáp án là B

Phương trình tương đương với

Xét hàm  Ta có  đồng biến

Mà  suy ra

Đặt u = cosx, 

Khi đó phương trình trở thành 

Xét 

Bảng biến thiên

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi

Bình luận (0)
NC
Xem chi tiết
HP
20 tháng 12 2020 lúc 22:41

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Bình luận (0)