Với giá trị nào của m thì x=1 là điểm cực tiểu của hàm số y = 1 3 x 3 + m x 2 + ( m 2 + m + 1 ) x
A. m ∈ - 2 ; - 1
B. m = -2
C. m = -1
D. Không có m
Cho hàm số y = x 4 2 - 2 m 2 x 2 + 2 . Tìm tập hợp tất cả các giá trị của tham số thực m sao cho đồ thị của hàm số đã cho có cực đại và cực tiểu, đồng thời đường thẳng cùng phương với trục hoành qua điểm cực đại tạo với đồ thị một hình phẳng có diện tích bằng 64 15 là
Cho hàm số bậc ba y=f(x) có đồ thị nhu hình vẽ bên. Tất cả các giá trị của tham số m để hàm số y=|f(x)+m| có ba điểm cực trị là:
A. m ≤ - 1 hoặc m ≥ 3
B. m ≤ - 3 hoặc m ≥ 1
C. m = -1 hoặc m = 3
D. 1 ≤ m ≤ 3
Cho hàm số y = - x 3 + 3 x 2 + m (m là tham số) có đồ thị (C). Gọi A, B là các điểm cực trị của đồ thị (C). Khi đó, số giá trị của tham số m để diện tích tam giác OAB (O là gốc tọa độ) bằng 1 là:
A. 0
B. 2
C. 1
D. 3
Số điểm cực tiểu của hàm số y = x 4 + x 2 + 1 là
A. 0
B. 1
C. 2
D. 3
tìm các giá trị thực của tham số m để đồ thị hàm số Cm : y= -x3 + 3mx2 - 2m3 có 2 điểm cực trị A, B sao cho đường thằng AB vuông góc với đường thằng d : y= -2x
Cho hàm số y = x 2 + m ( 2018 - x 2 + 1 ) - 2021 với m là tham số thực. Gọi S là tổng tất cả các giá trị nguyên của tham số m để đồ thị của hàm số đã cho cắt trục hoành tại đúng hai điểm phân biệt. Tính S.
A. 960
B. 986
C. 984
D. 990
Cho hàm số f(x) có đạo hàm f'(x) = \(x\left(1-x\right)^2\left(3-x\right)^3\left(x-2\right)^4\) . Điểm cực tiểu của hàm số đã cho là
A: x = 2
B: x = 3
C: x = 0
D: x = 1
Ai có bảng biến thiên thì vẽ cho dễ hiểu
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
Gọi M mà m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = 1 - x - 2 x 2 x + 1 . Khi đó giá trị của M-m là:
A. -2
B. -1
C. 1
D. 2
Với mọi giá trị của x thì giá trị của biểu thức 2x(3x−1)−6x(x+1)+(3+8x) là: *
AMột đáp số khác
B2
C3
D4