Những câu hỏi liên quan
TN
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 2 2018 lúc 10:21

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2017 lúc 12:46

Đáp án D

YCBT: y ' = cos x - sin x + m ≥ 0 với mọi x ∈ ℝ ⇔ m ≥ sin x - cos x = f x với  x ∈ ℝ .

Mà ta có:  f x = sin x - cos x = 2 x - π 4 ⇒ - 2 ≤ f x ≤ 2 ⇒ m ≥ 2

Bình luận (0)
H24
Xem chi tiết
KY
23 tháng 6 2021 lúc 22:07

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

Bình luận (0)
KY
23 tháng 6 2021 lúc 22:04

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2 

Bình luận (0)
NH
23 tháng 6 2021 lúc 22:10

1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

2. để đi qua điểm (1;-4),

\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)

3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)

tọa độ điểm cố định là nghiệm của hpt

\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

đ cđịnh M(-1;4)

4. \(y=\left(m-1\right)x+m+3\)

+ Khi x=0, y=m+3

+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)

Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)

 

Bình luận (1)
BA
Xem chi tiết
NT
27 tháng 8 2021 lúc 22:02

c: Thay x=1 và y=-4 vào (d), ta được:

\(m-1+m+3=-4\)

\(\Leftrightarrow2m=-6\)

hay m=-3

Bình luận (0)
BA
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 1 2019 lúc 9:32

Đáp án là  D.

Để  đường thẳng y = 2 m - 1  cắt ( C ) tại hai điểm phân biệt thì  2 m - 1 = 5 2 m - 1 = 1 ⇔ m = 3 m = 1

Bình luận (0)
CD
Xem chi tiết
NT
20 tháng 4 2017 lúc 20:53

1. Để đồ thị của hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1 thì:

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

Vậy để 2 đồ thị trên song song với nhau thì m=-1 và m\(\ne\)-2

2. Vì đồ thị đi qua điểm (1;-4) nên ta có:

-4=m-1+m+3

\(\Leftrightarrow\) 2m=-6

\(\Leftrightarrow m=-3\)

Vậy để đồ thị đi qua điểm (1;-4) thì m=-3

Bình luận (0)
NN
29 tháng 9 2017 lúc 17:37

c

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 5 2018 lúc 16:06

Chọn D

Phương pháp:

Biến đổi phương trình về f(x) = 2018 - m và sử dụng tương giao đồ thị: Phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng y = 2018 - m cắt đồ thị hàm số y = f(x) tại duy nhất một điểm.

Cách giải:

Phương trình f(x) + m - 2018 = 0 

 

Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 - m (có phương song song hoặc trùng với trục hoành).

Dựa vào đồ thị, ta có ycbt 

Bình luận (0)