Những câu hỏi liên quan
PB
Xem chi tiết
CT
31 tháng 7 2017 lúc 6:57

Bình luận (0)
BK
Xem chi tiết
DL
Xem chi tiết
DL
3 tháng 1 2018 lúc 18:18
đoạn cuối È là EF nha :)
Bình luận (0)
H24
3 tháng 1 2018 lúc 19:10

A B C E H F

a) Xét \(\Delta\)ABE và \(\Delta\)FBE có :

BF=BA (gt)

\(\widehat{ABE}=\widehat{FBE}\) ( vì tia phân giác góc B )

BE chung (gt)

Do đó \(\Delta\)ABE = \(\Delta\)FBE (c-g-c)

b) Ta có :

ABE = \(\Delta\)FBE (cmt)

=> \(\widehat{EAB}=\widehat{EFB}=90^o\) ( 2 cặp góc tương ứng )

Vậy \(\widehat{EFB}\) = 90o

c) Vì AH \(\perp\) BC nên \(\widehat{AHB}\) = 90o

\(\widehat{EFB}\)=90o ( câu b )

=> \(\widehat{AHB}\) và \(\widehat{EFB}\) là 2 cặp góc đồng vị

=> AH//EF

Bình luận (0)
VN
Xem chi tiết
NA
Xem chi tiết
BL
23 tháng 12 2018 lúc 9:53

B A C E H E

a) Xét \(\Delta ABE\)và \(\Delta FBE\)có:

\(BA=BF\left(gt\right)\)

\(\widehat{ABE}=\widehat{FBE}\left(gt\right)\)

\(BE\)là cạnh chung

Do đó \(\Delta ABE=\Delta FBE\left(c.g.c\right)\)

Bình luận (0)
BL
23 tháng 12 2018 lúc 9:56

b) Vì \(\Delta ABE=\Delta FBE\)(câu a)

Nên \(\widehat{BAE}=\widehat{BFE}\)(2 góc tương ứng)

Mà \(\widehat{BAE}=90^o\left(gt\right)\)

Nên \(\widehat{BFE}=90^o\)

Bình luận (0)
BL
23 tháng 12 2018 lúc 9:58

c) Vì \(\widehat{EFB}=90^o\)(câu b)

\(\Rightarrow EF\perp BC\)

Mà \(AH\perp BC\left(gt\right)\)

\(\Rightarrow EF//AH\)

Bình luận (0)
TL
Xem chi tiết
BA
29 tháng 1 2016 lúc 20:23

a) Ta có : tam giác ABC vuông tại A 

=> góc B + góc C = 90\(^o\)

Mà góc B = 53\(^o\)

=> góc C = góc A - góc B 

=> góc C = 90\(^o\)- 53\(^o\)

=> góc C = 37\(^o\)

b) Xét tam giác BEA và  tam giác BED có :

BD = BA (gt)

BE là cạnh chung

góc ABE = góc DBE ( BE là tia p/giác của góc B)

=>  tam giác BEA =  tam giác BED

c) Ta có CH vuông góc với BE 

=> Tam giác BHC và  tam giác BHF là  tam giác vuông

Xét  tam giác vuông BHF và  tam giác vuông BHC có:

BH là cạnh chung 

góc FBH = góc HBC ( BE là tia p/giác của góc B)

=>  tam giác vuông BHF =  tam giác vuông BHC ( cạnh góc vuông + góc nhọn )

=> BF = BC ( 2 cạnh tương ứng ) (*)

d) Xét tam giác BEF và tam giác BEC có :

BF = BC ( theo (*))

góc FBE = góc CBE ( BE là tia p/giác của góc B)

BE là cạnh chung

=>  tam giác BEF = tam giác BEC (c . g . c )

=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)

Xét  tam giác BAC và  tam giác BDF có :

góc BFD = góc BCA ( theo (**))

góc B là góc chung

BA = BD (gt)

=> tam giác BAC =  tam giác BDF ( g . c . g )

=> góc FDB = góc CAB ( 2 góc tương ứng )

Xét tam giác BED có : góc EBD +  góc BED +  góc BDE = 180\(^o\)

Mà :góc FDB = góc CAB = 90\(^o\)

góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)

=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))

=> góc BED = 180\(^o\)- 116,5\(^o\)

=> góc BED = 63,5\(^o\)

Mặt khác : Tam giác BED = tam giác BEA 

=> góc AEB = BED = 63,5\(^o\)

Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)

Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)

=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))

=> FEA = 180\(^o\)- 127\(^o\)

=> FEA = 53\(^o\)

Lại có : góc FAD = góc FEA + góc AEB + góc BED 

=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)

=> FAD = 180\(^o\)

=> D, F, E thẳng hàng

Bình luận (0)
TL
Xem chi tiết
PN
Xem chi tiết
NT
11 tháng 1 2023 lúc 8:26

a: Xét tứ giác ABMI có

MI//AB

MI=AB

Do đó; ABMI là hình bình hành

Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hìnhchữ nhật

b: \(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{32}=4\sqrt{2}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot4\sqrt{2}\cdot4\sqrt{2}=2\sqrt{2}\cdot4\sqrt{2}=16\left(cm^2\right)\)

c: A đối xứng D qua BC

nên CA=CD

=>CD=AB

Bình luận (0)
HP
Xem chi tiết
NM
4 tháng 11 2015 lúc 14:28

S(ACF) = S(ACFG) -S(AFG)

S(ACFG) = S(ACD) + S(CDGF) = \(\frac{8.8}{2}\)+ \(\frac{\left(8+4\right).4}{2}\)= 32 + 24 = 56 (cm2) (1)

S(AFG) = \(\frac{\left(AD+DG\right).GF}{2}\)= \(\frac{\left(8+4\right).4}{2}\)= 24 cm2 (2)

vậy từ (1) và (2) --> S(ACF) = 56 - 24 = 32 cm2

Bình luận (0)