Gọi S là tập các số có bốn chữ số khác nhau được lập nên từ các chữ số 0; 1; 2; 3; 5; 6; 9. Chọn một số từ tập S, tính xác suất để số được chọn luôn có mặt chữ số 9 và có tổng các chữ số là một số chẵn.
A. 17 60 .
B. 17 105 .
C. 4 21 .
D. 1 3 .
Gọi S là tập hợp tất các cả số tự nhiên gồm bốn chữ số. Chọn ngẫu nhiên một số từ S, xác suất để số chọn được có bốn chữ số khác nhau bằng
A. 14 25
B. 63 125
C. 2 25
D. 18 25
Cho tập hợp S= 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số trong tập A. Chọn ngẫu nhiên một chữ số từ S. Xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là
A. 1 5
B. 18 35
C. 17 35
D. 3 35
gọi s là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau được lập thành từ các số 0 1 2 3 4 tính xác xuất để trong ba số được lấy ra có đúng một số có chữ số ba
Đề bài chính xác là gì nhỉ? Lấy ra 3 số từ tập đã cho, tính xác suất để trong 3 số có đúng 1 số có chữ số 3?
Số cách lập số có 3 chữ số phân biệt từ tập đã cho: \(4.4.3=48\)
Lấy ra 3 số bất kì: có \(C_{48}^3\) cách
Gọi số có 3 chữ số khác nhau lập từ các số nói trên và luôn có mặt chữ số 3 là abc
TH1: a=3: bc có \(A_4^2=12\) cách chọn
TH2: a khác 3: chọn a có 3 cách, số còn lại có 3 cách, hoán vị nó với 3 cách 2 cách \(\Rightarrow3.3.2=18\) số
\(\Rightarrow12+18=30\) số có mặt chữ số 3 và 18 số không có mặt chữ số 3
Chọn 3 số trong đó có đúng 1 số có mặt chữ số 3: \(C_{30}^1.C_{18}^2\) cách
Xác suất: \(P=\dfrac{C_{30}^1C_{18}^2}{C_{48}^3}=...\)
Gọi S là tập hợp các số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 0,1,2,3,4,5,6, chọn ngẫu nhiên hai số từ tập hợp S, xác xuất để mỗi số được chọn có tổng các chữ số bằng 7
A. 17 / 1790
B. 15 / 1790
C. 13 / 1790
D. 5 / 358
Cho tập hợp A={2,3,4,5,6,7,8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số trong tập A. Chọn ngẫu nhiên một chữ số từ S. Xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là:
A. 1 5
B. 18 35
C. 17 35
D. 3 35
Cho tập hợp A = 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 . Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số trong tập A . Chọn ngẫu nhiên một chữ số từ S . Xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là:
A. 1 5
B. 18 35
C. 17 35
D. 3 35
Cho tập hợp bốn chữ số 0; 1; 2; 3. Có thể lập được bao nhiêu số khác nhau( mỗi chữ số không dùng quá một lần trong các số đã lập ra) từ tập hợp các chữ số đã cho
Gọi s là tập hợp tất cả các số tự nhiên có ba chữ số khác nhau được lập từ các chữ số 0;1;2;3;5;6;8. Chọn ngẫu nhiên một số tập hợp s, tính xác suất để số được chọn có số chữ số lẽ nhiều hơn số chữ số chẵn.
Không gian mẫu: \(A_7^3-A_6^2=180\) số
Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn
- 3 chữ số đều lẻ: \(A_3^3=3\) số
- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách
+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số
+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số
\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số
Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)
Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn thỏa mãn a≤b≤c
A. 1 6
B. 11 60
C. 13 60
D. 9 11
Chọn đáp án B
Phương pháp
Chia các TH sau:
TH1: a<b<c.
TH2: a=b<c.
TH3: a<b=c.
TH4: a=b=c.
Cách giải
Gọi số tự nhiên có 3 chữ số là a b c ¯ (0≤a,b,c≤9, a≠0).
=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900
Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.
TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3 số thỏa mãn.
TH2: a=b<c, có C 9 2 số thỏa mãn.
TH3: a<b=c có C 9 2 số thỏa mãn.
TH4: a=b=c có 9 số thỏa mãn.
⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165
Vậy P ( A ) = 11 60 .