Cho ∫ 1 2 1 + x 2 x 4 d x = 1 c ( a a - b b b + c ) Tính a+b+c
A. T=10
B. T=15
C. T=25
D. T=13
a, x43 chia cho x2+1
b, x^77+x^55+x^33+x^11+x+9 Cho x^2+1
CMR a, x^50+x^10+1 chia hết cho x^20+x^10+1
b, x^10-10x+9 chia hết cho x^2-2x+1
c, x^4n+2 +2x^2n+1 chia hết cho x^2+2x+1
(x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2+1
(x^n-1)(x^n+1-1) chia hết cho (x+1)(x-1)^2
1, (x+3)chia hết cho(x+1)
2, (2x+5)chia hết cho (x+2)
3,(3x+5)chia hết cho (x-2)
4,(x^2-x+2)chia hết cho (x-1)
5,(x^2+2x+4)chia hết cho (x+1)
2: \(\Leftrightarrow x+2\in\left\{1;-1\right\}\)
hay \(x\in\left\{-1;-3\right\}\)
1) Cho 0 < x < 2 Tìm min A = 2/(2-x) +1/x
2) Cho x>1 Tìm min A = x/2 +2/(x-1)
3) cho 0 < x<1 tìm min A = x/(x-1) +4/x
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
1. Cho biểu thức : Q = ( √x + 2 / x +2 √x + 1 - √x - / x -1) ( x+ √x)
a) Rút gọn biểu thức Q
b) Tìm các gtri nguyên x dể Q nhận gtri nguyên
2. Cho biểu thức : A= ( 1/ √x +2 + 1/ √x +2 + 1/ √x -2 ) ( √x -2 /x
a) Tìm đk xác định và rút gọn A
b) Tìm tất cả các gtri của x để A > 1/2
MÌNH CẦN GẤP TRONG TỐI NI NHA
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
a, cho x-y=2 tinh <x-1>^2+<y+1>^2=2xy
b, cho x-1/2=ytinh x^3-8y^3=6xy
c,cho x^2-y=2va xy =2 tinh x^2+y^2
cho (x-1/x):(x+1/x)=3.Tính (x^2-1/x^2):(x^2-1/x^2)
Tìm x
a,x + 6 chia hết cho x + 1, x + (-1)
b,x + 6 chia hết cho x - 2, x + (-2)
c,x + 7 chia hết cho x - 2, x + 2
d,x + 3 chia hết cho x - 1, x + 1
MIK ĐG CẦN GẤP GIÚP MIK VỚI
a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)
\(x\) + 1 + 5 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-6; -2; 0; 4}
\(x\) + 6 ⋮ \(x\) + (-1) (\(x\) ≠ 1)
\(x\) + - 1 + 7 ⋮ \(x\) - 1
7 ⋮ \(x\) - 1
\(x\) - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(x\) \(\in\) {-6; 0; 2; 8}
b; \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 8 ⋮ \(x\) - 2
8 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}
\(x\) + 6 ⋮ \(x\) + (-2)
\(x\) + 6 ⋮ \(x\) - 2
giống với ý trên
c; \(x\) + 7 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 9 ⋮ \(x\) - 2
9 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) {-9; -3; -1; 1; 3; 9}
\(x\) \(\in\) {-7; -1; 1; 3; 5; 11}
\(x\) + 7 \(⋮\) \(x\) + 2 (đk \(x\) ≠ -2}
\(x\) + 2 + 5 \(⋮\) \(x\) + 2
5 ⋮ \(x\) + 2
\(x\) + 2 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-7; -3; -1; 3}
\(Cho biểu thức Q= { x 2 − 1 x − 1 + x 3 − 1 1 − x 2 } : 2 x 2 − 4 x + 2 x 2 − 1 a, Rút gọn Q b, tìm x sao cho | Q | > Q \)
Tìm các số tự nhiên x sao cho
1) 2 chia hết cho x
2)2 chia hết cho ( x + 1)
3) 2 chia hết cho ( x + 2)
4) 2 chia hết cho ( x -1)
1) \(2⋮x\Rightarrow x\in U\left(2\right)=\left\{1;2\right\}\left(x\inℕ\right)\)
2) \(2⋮\left(x+1\right)\Rightarrow x+1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\left(x\inℕ\right)\)
3) \(2⋮\left(x+2\right)\Rightarrow x+2\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{-1;0\right\}\Rightarrow x\in\left\{0\right\}\left(x\inℕ\right)\)
4) \(2⋮\left(x-1\right)\Rightarrow x-1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{2;3\right\}\left(x\inℕ\right)\)
1. 2 chia hết cho x
Ta có 2 là số chẵn, nên x phải là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 2, 4, 6, …
2. 2 chia hết cho (x + 1)
Ta có 2 chia hết cho (x + 1) khi và chỉ khi x + 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 1, 3, 5, …
3. 2 chia hết cho (x + 2)
Ta có 2 chia hết cho (x + 2) khi và chỉ khi x + 2 là số chẵn. Điều này tương đương với x là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 0, 2, 4, …
4. 2 chia hết cho (x - 1)
Ta có 2 chia hết cho (x - 1) khi và chỉ khi x - 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 3, 5, 7, …
\(1)2⋮x\Rightarrow x\inƯ\left(2\right)\Rightarrow x\in\left\{1;2\right\}\left(\text{do }x\inℕ\right)\)
\(2)2⋮x+1\Rightarrow x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)\(\Rightarrow x\in\left\{0;1\right\}\left(\text{do }x\inℕ\right)\)
\(3)2⋮x+2\Rightarrow x+2\inƯ\left(2\right)=\left\{1;2\right\}\)\(\Rightarrow x=0\left(\text{do }x\inℕ\right)\)
\(4)2⋮x-1\Rightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0;2;3\right\}\left(\text{do }x\inℕ\right)\)