Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 11 2018 lúc 15:38

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 2 2017 lúc 8:44

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 9 2017 lúc 12:40

Chọn đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 10 2017 lúc 7:22

Đáp án B

Bình luận (0)
TN
Xem chi tiết
H24
19 tháng 1 2023 lúc 20:35

để pt có hai nghiệm trái dấu: 

 \(1.\left(m-10\right)< 0\\ =>m< 10\\ =>m=\left\{1;2;3;4;5;6;7;8;9\right\}\\ =>C\)

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 8 2018 lúc 15:13

Chọn B.

Phương pháp:

+ Biến đổi phương trình thứ nhất của hệ để đưa về dạng 

+ Thay vào phương trình thứ hai ta được phương trình ẩn y. Lập luận phương trình này có nghiệm duy nhất 

thì  hệ ban đầu sẽ có nghiệm duy nhất.

+ Sử dụng bất đẳng thức Cô-si để thử lại m. 

Cách giải:

Vậy phương trình (***) có nghiệm duy nhất y = 0.

Kết luận : Với m = 0 thì hệ đã cho có nghiệm duy nhất nên tập S có một phần tử.

Chú ý :

Các em có thể làm bước thử lại như sau :

Thay m = 0 vào (*) ta được

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 5 2018 lúc 5:02

Chọn đáp án A

Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.

Bình luận (0)
NT
Xem chi tiết
NL
11 tháng 11 2021 lúc 21:44

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 8 2019 lúc 12:54

Đặt  − x 2 + x = t ;

f x = − x 2 + x ; f ' x = − 2 x + 1

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 7 2019 lúc 3:39

Đáp án A

+)()

Điều kiện:

+)

Đặt:

Đặt

.

Bảng biến thiên

+)

Để phương trình có hai nghiệm phân biệt

Do đó để phương trình có hai nghiệm phân biệt thì phương trìnhcó nghiệm

Từ bảng biến thiên.

Bình luận (0)