Những câu hỏi liên quan
DL
Xem chi tiết
NH
Xem chi tiết
NT
12 tháng 7 2023 lúc 23:09

2: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

BC=căn 6^2+8^2=10cm

=>OB=OC=10/2=5cm

S=5^2*3,14=78,5cm2

Bình luận (0)
H24
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
TN
24 tháng 5 2016 lúc 21:22

A B C I

trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền

Áp dụng định lý pytago vào tgiac vuông ABC ta có :

\(BC^2\)=\(AC^2\)+\(AB^2\)

\(BC^2\)=\(8^2\)+\(6^2\)

\(BC^2\)=100

BC=10 

Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:

10:2=5cm

Bình luận (0)
NM
31 tháng 7 2016 lúc 23:15

bán kính đường tròn nội tiếp = 1 ok ;)

 

Bình luận (2)
UN
Xem chi tiết
NT
24 tháng 5 2016 lúc 19:59

Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)

ra có R=BC/2=5

mà S=pr=(6+8+10)/2r=6*8/2=>r=2

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 4 2019 lúc 14:26

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF cân tại B nên HE = HF

Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)

Vậy tam giác AHF cân tại H.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 10 2017 lúc 5:42

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của AD và BC

Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:

BA = BD

Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.

Bình luận (0)
CH
Xem chi tiết
BT
27 tháng 11 2021 lúc 17:48

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

Bình luận (0)
 Khách vãng lai đã xóa
NH
27 tháng 11 2021 lúc 18:17

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (p là  chu vi của tam giác ABCr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

Bình luận (0)
 Khách vãng lai đã xóa
DT
27 tháng 11 2021 lúc 21:49
 giải:

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có S_{\Delta ABC}=S_{\Delta OAB}+S_{\Delta OBC}+S_{\Delta OAC}
                     =\dfrac{1}{2}OD.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OH.BC
                      =\dfrac{1}{2}r.\left(AB+AC+BC\right)
                      =\dfrac{1}{2}pr (p là  chu vi của tam giác ABCr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=\sqrt{AB^2+AC^2}=10\left(cm\right).
Diện tích tam giác ABC là: \dfrac{1}{2}AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right).
Chu vi tam giác ABC là: 6+8+10=24\left(cm\right).
Suy ra: 24=\dfrac{1}{2}.24.r\Leftrightarrow r=2\left(cm\right).

Bình luận (0)
 Khách vãng lai đã xóa