Cho hàm số f(x)= tanx(2cotx- 2 cos x + 2 cos 2 x ) có nguyên hàm là F(x) và F( π 4 )= π 2 . Giả sử F(x)= ax+ b cos x - cos c x 2 - d . chọn phát biểu đúng.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số f ( x ) = tan x ( 2 c o t x - 2 cos x + cos 2 x ) có nguyên hàm là F(x) và F π 4 = π 2 . Giả sử F ( x ) = a x + b cos x - cos c x 2 - d . Chọn phát biểu đúng.
Nguyên hàm của hàm số f ( x ) = cos ( 5 x - 2 ) là.
Hàm số f ( x ) = cos x sin 5 x có một nguyên hàm F(x) bằng
A. 1 8 sin 4 x
B. - 1 8 sin 4 x + 1
C. 4 sin 4 x
D. - 1 4 sin 4 x + 2
Chọn D
∫ f ( x ) d x = ∫ cos x sin 5 x d x = ∫ 1 sin 5 x d ( s i n x ) = - 1 4 sin 4 x + C
Cho C = 2
Nguyên hàm của hàm số f(x) = cos(5x-2)
Hàm số F(x) = ln|sin x – cos x| là một nguyên hàm của hàm số
A. f ( x ) = sin x + cos x sin x - cos x
B. f ( x ) = sin x - cos x sin x + cos x
C. f ( x ) = 1 sin x + cos x
D. f ( x ) = 1 sin x - cos x
Chọn A.
F ' ( x ) = sin x - cos x ' sin x - cos x = cos x + sin x sin x - cos x
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\) .
tìm chu kì của hàm số
f(x)= cos^2 x
f(x)=|cos x|
Tìm nguyên hàm F(x) của hàm số \(f\left(x\right)=\cos x+\sin x\) sao cho nguyên hàm đó thỏa mãn điều kiện F(0)=1
Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó.
Để xác định hằng số C ta sử dụng điều kiện F(0)=1
Từ điều kiện này và biểu thức F(x) ta có :
\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)
Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm
Cho hàm số f x = tan x 2 c o t x + 2 cos x + 2 cos 2 x có
nguyên hàm là F(x) và F π 4 = π 2 .
Giả sử F x = a x + b cos x - cos c x 2 - d .Chọn phát biểu
đúng:
A. a : b : c = 1 : 2 : 1
B. a + b + c = 6
C. a + b = 3c
D. a – b + c = d