Những câu hỏi liên quan
H24
Xem chi tiết
PB
Xem chi tiết
CT
7 tháng 5 2017 lúc 10:49

Chọn B.

T = 1 u 1 - u 5 + 1 u 2 - u 6 + 1 u 3 - u 7 + . . . + 1 u 20 - u 24

= 1 1 - q 4 1 u 1 + 1 u 2 + 1 u 3 + . . . + 1 u 20

= 1 1 - q 4 . 1 u 1 . 1 q 20 - 1 1 q - 1

= 1 - 2 20 15 . 2 19

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 11 2017 lúc 12:36

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 15:17

Đáp án C

Em có:  S = 1. q n − 1 q − 1 = q n − 1 q − 1 .

Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là  1 q .

Gọi S' là tổng mới của cấp số nhân mới.

Em có:  S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .

Vậy tổng của cấp số nhân mới là:  S q n − 1 .

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:36

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:33

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n}.5^{- 1}}}} = 5,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân với \({u_1} = 10\) và công bội \(q = 5\).

Bình luận (0)
H24
Xem chi tiết
AH
13 tháng 10 2023 lúc 23:44

1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$

$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$

$\Leftrightarrow q=\pm 2$

2. 

$u_{2019}=q^{2018}u_1=2.3^{2018}$

Bình luận (0)
JE
Xem chi tiết
H24
8 tháng 2 2021 lúc 11:45

De co cho thieu du kien la co bao nhieu so hang ko nhi ?Hay no la 1 csn lui vo han? Neu lui vo han thi lam duoc

\(\left\{{}\begin{matrix}q=4\\\dfrac{1}{u_1}+\dfrac{1}{u_2}+\dfrac{1}{u_3}+...+\dfrac{1}{u_n}+....=2\end{matrix}\right.\)

\(u_2=u_1.q;u_3=u_1.q^2;....;u_n=u_1.q^{n-1}\)

\(\Rightarrow\dfrac{1}{u_1}+\dfrac{1}{u_1.q}+\dfrac{1}{u_1.q^2}+...+\dfrac{1}{u_1.q^{n-1}}+....=2\)

\(\Leftrightarrow\dfrac{1}{u_1}\left(1+\dfrac{1}{q}+\dfrac{1}{q^2}+...+\dfrac{1}{q^{n-1}}+...\right)=2\)

Cần tính tổng trong ngoặc

\(\left\{{}\begin{matrix}u_1'=1\\q'=\dfrac{1}{q}\end{matrix}\right.\)

\(\Rightarrow S'_n=\dfrac{1}{1-q'}=\dfrac{1}{1-\dfrac{1}{4}}=\dfrac{4}{3}\)

\(\Rightarrow u_1=\dfrac{S'_n}{2}=\dfrac{4}{3.2}=\dfrac{2}{3}\)

Bình luận (3)
JE
Xem chi tiết
HQ
9 tháng 2 2021 lúc 9:39

không cho bao nhiêu số hạng hã?

Bình luận (2)