Bài 1: Giới hạn của dãy số

JE

cho cấp số nhân có số hạng đầu u1, công bội q=4. biết tổng nghịch đảo của tất cả các số hạng của dãy số đã cho bằng 2. tính giá trị u1

H24
8 tháng 2 2021 lúc 11:45

De co cho thieu du kien la co bao nhieu so hang ko nhi ?Hay no la 1 csn lui vo han? Neu lui vo han thi lam duoc

\(\left\{{}\begin{matrix}q=4\\\dfrac{1}{u_1}+\dfrac{1}{u_2}+\dfrac{1}{u_3}+...+\dfrac{1}{u_n}+....=2\end{matrix}\right.\)

\(u_2=u_1.q;u_3=u_1.q^2;....;u_n=u_1.q^{n-1}\)

\(\Rightarrow\dfrac{1}{u_1}+\dfrac{1}{u_1.q}+\dfrac{1}{u_1.q^2}+...+\dfrac{1}{u_1.q^{n-1}}+....=2\)

\(\Leftrightarrow\dfrac{1}{u_1}\left(1+\dfrac{1}{q}+\dfrac{1}{q^2}+...+\dfrac{1}{q^{n-1}}+...\right)=2\)

Cần tính tổng trong ngoặc

\(\left\{{}\begin{matrix}u_1'=1\\q'=\dfrac{1}{q}\end{matrix}\right.\)

\(\Rightarrow S'_n=\dfrac{1}{1-q'}=\dfrac{1}{1-\dfrac{1}{4}}=\dfrac{4}{3}\)

\(\Rightarrow u_1=\dfrac{S'_n}{2}=\dfrac{4}{3.2}=\dfrac{2}{3}\)

Bình luận (3)

Các câu hỏi tương tự
JE
Xem chi tiết
SK
Xem chi tiết
TP
Xem chi tiết
JE
Xem chi tiết
NT
Xem chi tiết
PM
Xem chi tiết
SK
Xem chi tiết
JE
Xem chi tiết
SK
Xem chi tiết