Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu ( x - 1 ) 2 + ( y + 2 ) 2 + z 2 = 12 và song song với mặt phẳng (Oxz) có phương trình là:
A. y+1=0.
B. y-2=0.
C. y+2=0.
D. x+z-1=0.
Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu x - 1 2 + y + 2 2 + z 2 = 12 và song song với mặt phẳng (Oxz) có phương trình là:
A. y + 1 = 0
B. y - 2 = 0
C. y + 2 = 0
D. x + z - 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng (P): 2x+y-2z+2=0. Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng P : 2 x + y - 2 z + 2 = 0 . Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là
A. x - 2 2 + y - 1 2 + z - 1 2 = 1
B. x + 2 2 + y + 1 2 + z - 1 2 = 1
C. x - 2 2 + y - 1 2 + z + 1 2 = 1
D. x - 2 2 + y + 1 2 + z - 1 2 = 1
Trong không gian Oxyz, lập phương trình của mặt cầu (S) đi qua 3 điểm O, A(2;0;0), B(0;2;0) và tâm thuộc mặt phẳng (P): x + y + z - 3 = 0
A. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 3
B. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 3
C. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 9
D. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 9
Đáp án A
Gọi I(a,b,c) là tâm của mặt cầu (S). Ta có:
=> I(1; 1; 1); R = OI = 3
Vậy phương trình của mặt cầu (S) là: ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 3
Trong không gian Oxyz, cho điểm A(1;0;-1), mặt phẳng (P): x + y - z - 3 = 0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + √2. Phương trình mặt cầu (S) là:
A. (x + 2)2 + (y - 2)2 + (z + 1)2 = 9 và (x + 1)2 + (y - 2)2 + (z + 2)2 = 9
B. (x - 2)2 + (y - 2)2 + (z - 1)2 = 9 và x2 + y2 + (z + 3)2 = 9
C. (x + 2)2 + (y - 2)2 + (z + 1)2 = 9 và (x + 1)2 + (y - 2)2 + (z + 2)2 = 9
D. (x + 1)2 + (y - 2)2 + (z + 2)2 = 9 và (x - 2)2 + (y - 2)2 + (z - 1)2 = 9
Chọn D
Giả sử (S): x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0 (a2 + b2 + c2 - d > 0)
và tâm I (a;b;c) ∈ (P) => a + b - c - 3 = 0 (1)
(S) qua A và O nên
Cộng vế theo vế (1) và (2) ta suy ra b = 2. Từ đó, suy ra I (a; 2; a-1)
Chu vi tam giác OAI bằng 6 + √2 nên OI + OA + AI = 6 + √2
+ Với a = -1 => A (-1; 2; -2) => R = 3. Do đó:
+ Với a = 2 => I (2;2;1) => R = 3. Do đó:
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;-1;0) và mặt phẳng (P): x-2y+z+2=0. Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu đi qua A và có tâm I là
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;-1;0) và mặt phẳng ( P ) : x - 2 y + z + 2 = 0 . Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu đi qua A và có tâm I là
A. x + 1 2 + y + 1 2 + z + 1 2 = 6
B. x + 1 2 + y - 1 2 + z + 1 2 = 6
C. x - 1 2 + y - 1 2 + z + 1 2 = 6
D. x + 1 2 + y + 1 2 + z - 1 2 = 6
Chọn C
Tìm tọa độ hình chiếu I.
Bán kính mặt cầu R=IA
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;6;2), B(3;0;0) và có tâm thuộc mặt phẳng (P):x - y + 2 =0. Bán kính mặt cầu (S) có giá trị nhỏ nhất là:
A. 534 4
B. 426 6
C. 530 4
D. 218 6
Đáp án B
Cách 1: Gọi I(a;b;c) là tâm của mặt cầu (S), vì I ∈ ( P ) ⇒ I ( a ; a + 2 ; c )
Ta có R = I A = I B ⇔ a - 1 2 + a - 4 2 + c - 2 2 = a - 3 2 + a + 2 2 + c 2 ⇔ c = 2 - 2 a
Khi đó R = I A = a - 1 2 + a - 4 2 + 4 a 2 = 6 a 2 - 10 a + 17 = 6 x - 5 6 2 + 77 6 ≥ 462 6
Vậy bán kính nhỏ nhất của mặt cầu (S) là R m i n = 462 6
Cách 2: Tham khảo hình bên
Ta có I thuộc giao tuyến mặt phẳng trung trực AB và P ⇒ I M ≥ M H
⇒ R ≥ H A ⇒ R m i n = H A với H là hình chiếu của M trên giao tuyến ⇒ R m i n = 462 6
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng (P): x+ y -z -3 =0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + 2 . Phương trình mặt cầu (S) là
A. x + 2 2 + y - 2 2 + z + 1 2 = 9 và x + 1 2 + y - 2 2 + z + 2 2 = 9
B. x - 3 2 + y - 3 2 + z - 3 2 = 9 và x - 1 2 + y - 1 2 + z + 1 2 = 9
C. x + 2 2 + y - 2 2 + z - 1 2 = 9 và x 2 + y 2 + z + 3 2 = 9
D. x + 1 2 + y - 2 2 + z + 2 2 = 9 và x - 2 2 + y - 2 2 + z - 1 2 = 9
Đáp án D.
Vậy phương trình mặt cầu cần tìm là