PB

Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;6;2), B(3;0;0) và có tâm thuộc mặt phẳng (P):x - y + 2 =0. Bán kính mặt cầu (S) có giá trị nhỏ nhất là:

A.  534 4

B.  426 6

C.  530 4

D.  218 6

CT
26 tháng 10 2017 lúc 11:40

Đáp án B

Cách 1: Gọi I(a;b;c) là tâm của mặt cầu (S), vì I ∈ ( P ) ⇒ I ( a ; a + 2 ; c )  

Ta có R = I A = I B ⇔ a - 1 2 + a - 4 2 + c - 2 2 = a - 3 2 + a + 2 2 + c 2 ⇔ c = 2 - 2 a  

Khi đó  R = I A = a - 1 2 + a - 4 2 + 4 a 2 = 6 a 2 - 10 a + 17 = 6 x - 5 6 2 + 77 6 ≥ 462 6

Vậy bán kính nhỏ nhất của mặt cầu (S) là R m i n = 462 6  

Cách 2: Tham khảo hình bên

Ta có I thuộc giao tuyến mặt phẳng trung trực AB và P ⇒ I M ≥ M H  

⇒ R ≥ H A ⇒ R m i n = H A  với H là hình chiếu của M trên giao tuyến ⇒ R m i n = 462 6

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết