Tính Tổng:
S=(-2)0+(-2)1+(-2)2+...........+(-2)2014+(-2)2015
help me :))
Tính tổng:S=1+3+32+33....+32014
\(S=1+3+3^2+3^3+...+3^{2014}\)
\(3S=3+3^2+3^3+3^4+...+3^{2015}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+2^{2015}\right)-\left(1+3+3^2+3^3+...+3^{2014}\right)\)
\(2S=3^{2015}-1\)
\(S=\frac{3^{2015}-1}{2}\)
Cho tổng:S=3^0+3^2+3^4+3^6+......+3^2014
a,Tính S
b,Chứng minh S chia hết cho 7
Tính tổng:S = 1^2+2^2+3^2+....+n^2
\(S=1^2+2^2+3^2+...+n^2\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)
Theo dạng tổng quát: \(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{2n\left(n+1\right)\left(n+2\right)}{6}-\frac{3n\left(n+1\right)}{6}\)
\(=\frac{2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)}{6}\)
\(=\frac{n\left(n+1\right).\left[2\left(n+2\right)-3\right]}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Vậy \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có : \(S=1^2+2^2+3^2+...+\)\(n^2\)
\(\Rightarrow S=\frac{n.\left(n+1\right)\left(n+2\right)}{2}\)
Xin lỗi mình nhớ nhầm công thức : \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Tính tổng:S=1+2+3+4+...+2107+2017
Tính tổng:S=2+4+6+...+98+100
Đang cần gấp sắp đi học
S=2+4+6+...+98+100
S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)
S=1+2+3+4+...+2016+2017
S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)
1.Số lượng số của S= (2017-1)+1=2017 số
tổng=(2016+1).(2016:2)+2017=2 035 153
2.Số lượng số của S=(100-2):2+1=50 số
tổng=(100+2).(50:2)=2 550
Lập trình tính tổng:
S=\(1^2+2^2+3^2+....+n^2\) ( n được nhập vào từ bàn phím ) .
uses crt;
var i,n:longint;
s:real;
begin
clrscr;
write('Nhap n='); readln(n);
s:=0;
for i:=1 to n do
s:=s+sqr(i);
writeln(s:0:0);
readln;
end.
tính tổng:S=1/2+1/22+...+1/22019
giúp mị vs
\(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2018}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\right)\)
\(\Rightarrow S=1-\frac{1}{2^{2019}}\)
Ta có: \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}\)
\(\Rightarrow\frac{1}{2}S=S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\Rightarrow S=1-\frac{1}{2^{2019}}.\)
\(\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}\)
\(S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\)
\(\Rightarrow S=\frac{1}{4}-\frac{1}{2^{2021}}\)
Tính tổng:s=\(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2007}\)
Đố:Biết rằng 1^2+2^2+3^2+4^2+...+10^2=385, đố em tính nhanh được tổng:S=2^2+4^2+6^2+...+20^2
Ta có: S=22+42+62+...+202
=(2.1)2+(2.2)2+(2.3)2+...+(2.10)2
=22.12+22.22+22.32+...+22.102
=22.(1+22+32+...+102)
Mà 12+22+32+...+102=385 nên:
S=22.385
=4.385
=1540
Vậy S=1540
Tính Tổng:
S=(-2)0+(-2)1+(-2)2+...........+(-2)2014+(-2)2015
help me :))
can gap
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s