Những câu hỏi liên quan
LH
Xem chi tiết
RT
Xem chi tiết
ND
Xem chi tiết
TA
8 tháng 2 2016 lúc 10:27

Đề bài cần nói rõ 3 số nguyên tố a,b,c khác nhau từng đôi một. 
------------------------ 
abc < ab + bc + ac 
<=> 1 < 1/a + 1/b + 1/c (*) 
Chỉ có 6 bộ 3 số nguyên tố khác nhau thỏa mãn (*).Đó là (2;3;5); (2;5;3); (3;2;5); (3;5;2); (5;2;3); (5;3;2) 
Trả lời : 6 (hoặc 1, nếu xem 6 bộ trên là như nhau)

Bình luận (0)
NA
11 tháng 11 2017 lúc 16:02

a=2;b=3;c=5

Bình luận (0)
NK
Xem chi tiết
DP
Xem chi tiết
ST
2 tháng 6 2017 lúc 11:36

Gọi P là tập hợp tất cả các số nguyên tố

Giả sử a,b,c \(\in\)P và \(a\ge b\ge c\)

=> ab + bc + ca \(\le\)3ab

=> abc \(\le\)3ab => c < 3 => c = 2

=> 2ab < ab + 2b + 2a = ab + 2(a + b)

=> ab < 2(a + b) \(\le\)4ab \(\le\)4

=> b = 2 hoặc 3

+) Nếu b = 2 => 4a < 2a + 4 + 2a => a tùy ý \(\in\)P

+) Nếu b = 3 => 6a < 3a + 6 + 2a => a < 6 => a = 3 hoặc 5

Vậy c = b = 2 và tùy ý \(\in\)P

      c = 2; b = 3; a = 3 hoặc a = 5

Bình luận (0)
TD
2 tháng 6 2017 lúc 11:41

Chia hai vế của bất đẳng thức abc < ab + bc + ac cho số dương abc được : 1 < \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}\)( 1 )

Giả sử a > b > c \(\ge\)2 . Trong ba phân số \(\frac{1}{c},\frac{1}{a},\frac{1}{b}\)thì \(\frac{1}{c}\)lớn nhất nên \(\frac{1}{c}>\frac{1}{3}\), do đó c < 3 . Vậy c = 2

Thay c = 2 vào ( 1 ) ta được : \(\frac{1}{a}+\frac{1}{b}>\frac{1}{2}\)( 2 )

Trong hai phân số \(\frac{1}{a},\frac{1}{b}\), phân số \(\frac{1}{b}\) lớn hơn nên : \(\frac{1}{b}>\frac{1}{2}:2=\frac{1}{4}\), do đó b < 4, mà b > c = 2, vậy b = 3

Thay b vào ( 2 ) ta được : \(\frac{1}{a}>\frac{1}{6}\). Do đó , a > 6 , mà a > b = 3 và a là số nguyên tố, vậy a = 5

Vậy các số a,b,c phải tìm là 2,3,5 và các hoán vị của chúng.

Bình luận (0)
ST
2 tháng 6 2017 lúc 11:41

ghi thêm vào dòng đầu của câu kết luận c=b=2 và a tùy ý thuộc P, ko phải c=b=2  và tùy ý thuộc P 

Bình luận (0)
H24
Xem chi tiết
H24
19 tháng 5 2018 lúc 22:20

sao ko ai trả lời zợ ? Muoón biết thì zô link http://yeuapk.com/xem-hon-500-kenh-truyen-hinh-k-18-viet-nam-mien-phi-cho-android/

Bình luận (0)
DL
19 tháng 5 2018 lúc 22:26

Giả sử a≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+ca (1) nên abc<3bc⇒a<3mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Bình luận (0)
H24
20 tháng 5 2018 lúc 22:30

Darling frank xxx

Bình luận (0)
DD
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
NL
8 tháng 4 2021 lúc 1:36

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>1\)

Do vai trò của a;b;c là như nhau, không mất tính tổng quát giả sử \(a< b< c\)

\(\Rightarrow\dfrac{1}{a}>\dfrac{1}{b}>\dfrac{1}{c}\Rightarrow\dfrac{3}{a}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>1\)

\(\Rightarrow a< 3\Rightarrow a=2\)

Khi đó: \(\dfrac{1}{2}+\dfrac{1}{b}+\dfrac{1}{c}>1\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}>\dfrac{1}{2}\)

\(\dfrac{2}{b}>\dfrac{1}{b}+\dfrac{1}{c}>\dfrac{1}{2}\Rightarrow b< 4\Rightarrow b=3\) (do \(b>a\Rightarrow b>2\))

Tiếp tục thay vào: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{c}>1\Rightarrow\dfrac{1}{c}>\dfrac{1}{6}\Rightarrow c< 6\)

Mà \(c>b\Rightarrow c>3\Rightarrow3< c< 6\Rightarrow c=5\)

Vậy \(\left(a;b;c\right)=\left(2;3;5\right)\) và các hoán vị

Bình luận (0)