Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 9 2018 lúc 9:29

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0 


Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 6 2017 lúc 2:25

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 4 2019 lúc 17:47

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2018 lúc 4:39

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 12 2018 lúc 12:34

Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 7 2018 lúc 3:07

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 4 2018 lúc 2:34

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 9 2018 lúc 2:25

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 2 2018 lúc 9:29

Bình luận (0)
NL
Xem chi tiết
NL
13 tháng 1 2021 lúc 11:46

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

Bình luận (0)