Tính tổng tất cả các giá trị của m biết đồ thị hàm số y = x 3 - 2 mx 2 + ( m + 2 ) x + 4 và đường thẳng y = x + 4 cắt nhau tại 3 điểm phân biệt A(0;4), B, C sao cho diện tích tam giác IBC bằng 8 2 với I(1;3)
A.3
B. 8
C. 1
D. 5
Tính tổng S tất cả các giá trị nguyên dương m sao cho đồ thị hàm số y = ( 4 - m ) x 2 + 2 m x - 3 - m x - 2 có 2 tiệm cận ngang.
Tính tổng S tất cả các giá trị nguyên dương m sao cho đồ thị hàm số y = 4 - m x 2 + 2 m x - 3 - m x + 2 có 2 tiệm cận ngang
A. S = 5
B. S = 3
C. S = 10
D. S = 6
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x^2-mx-2m^2}{x-2}\) có tiệm cận đứng .
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
Gọi S là tập tất cả các giá trị của tham số m để đồ thị hàm số y = x 3 + 3 x 2 + 2 3 - 4 x 2 + 3 x + 2 + m x có tiệm cận ngang. Tổng các phần tử của S là
A. - 2
B. 2
C. - 3
D. 3
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = 2 x 3 - 2 + m x + m cắt trục hoành tại 3 điểm phân biệt
A. m > - 1 2
B. m > - 1 2 , m ≠ 4
C. m > 1 2
D. m ≤ 1 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = m x − 8 x + 2 có tiệm cận đứng
A. m = 4
B. m = − 4
C. m ≠ 4
D. m ≠ − 4
Đáp án D
Hàm số có tiệm cận đứng
⇔ P T m x − 8 = 0 không có nghiệm x = − 2.
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = m x − 8 x + 2 có tiệm cận đứng
A. m = 4
B. m = − 4
C. m ≠ 4
D. m ≠ − 4
Đáp án D
Hàm số có tiệm cận đứng ⇔ P T m x − 8 = 0 không có nghiệm x=-2
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 - m x + 1 có đúng 3 đường tiệm cận.
A. -2<m<2
B. m > 2 m < - 2 h o ặ c m ≠ - 5 2
C. m>2 hoặc m<-2
D. m > 2 m ≠ 5 2 hoặc m<-2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 – m x + 1 có đúng 3 đường tiệm cận
A. -2 < m < 2
B. m > 2 m < - 2 m ≠ - 5 2
C. m < - 2 m > 2
D. m < - 2 m > 2 m ≠ 5 2