Những câu hỏi liên quan
BN
Xem chi tiết
MV
1 tháng 8 2017 lúc 17:33

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

Bình luận (0)
MS
1 tháng 8 2017 lúc 17:44

Bạn mới hỏi ở dưới rồi :v

Bình luận (0)
MV
1 tháng 8 2017 lúc 17:48

b,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{2}{5}\right|\ge0\forall y\\ \left|z+\dfrac{1}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\forall x,y,z\\ \)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{2}{5}\right|=0\\\left|z+\dfrac{1}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{2}{5}=0\\z+\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{2}{5}\\z=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy ...

c,

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x\\ \left|y+\dfrac{1890}{1975}\right|\ge0\forall y\\ \left|z-2004\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-1890}{1975}=\dfrac{-378}{395}\\z=2004\end{matrix}\right. \)

Vậy ...

Bình luận (0)
HH
Xem chi tiết
IY
15 tháng 2 2018 lúc 18:38

a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=0\)                           \(\Rightarrow|y-\frac{1}{5}|=0\)                                \(\Rightarrow|x+y+z|=0\)

\(\Rightarrow x+\frac{3}{4}=0\)                              \(\Rightarrow y-\frac{1}{5}=0\)                                      \(\Rightarrow x+y+z=0\)

\(x=\frac{-3}{4}\)                                                \(y=\frac{1}{5}\)                                                 thay x=-3/4; y=1/5 vào biểu thức trên

                                                                                                                                          ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)

                                                                                                                                                        \(z=0-\frac{-3}{4}-\frac{1}{5}\)

      VẬY X=-3/4; Y=1/5; Z=11/20

B) \(|3x-4|+\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=0\)                                    \(\Rightarrow\left|3y-5\right|=0\)

\(3x-4=0\)                                                    \(3y-5=0\)

\(3x=4\)                                                                    \(3y=5\)
\(x=\frac{4}{3}\)                                                                       \(y=\frac{5}{3}\)

VẬY X= 4/3; Y=5/3

C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)

MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG

\(\Rightarrow x;y;z\in\varnothing\)

d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=0\)                                \(\Rightarrow\left|3-y\right|=0\)

\(x+\frac{1}{5}=0\)                                                 \(3-y=0\)

\(x=\frac{-1}{5}\)                                                              \(y=3\)

VẬY X= -1/5; Y=3

CHÚC BN HỌC TỐT!!!!!!!

Bình luận (0)
PQ
15 tháng 2 2018 lúc 13:58

Ta có : 

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

Bình luận (0)
PQ
15 tháng 2 2018 lúc 14:03

\(b)\) Ta có : 

\(\left|3x-4\right|+\left|3y-5\right|=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-4=0\\3y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\3y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\y=\frac{5}{3}\end{cases}}}\)

Vậy \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)

Bình luận (0)
BN
Xem chi tiết
NM
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
11 tháng 12 2023 lúc 21:12

Bài 1: 

a,  \(x^2\) +2\(x\) = 0

     \(x.\left(x+2\right)\) = 0

     \(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

      \(x\) \(\in\) {-2; 0}

b, (-2.\(x\)).(-4\(x\)) + 28  = 100

      8\(x^2\)           + 28  = 100

        8\(x^2\)                   = 100 - 28

        8\(x^2\)                   = 72

          \(x^2\)                  = 72 : 8

          \(x^2\)                   = 9

           \(x^2\)                  = 32

          |\(x\)|                  = 3

          \(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\) 

Vậy \(\in\) {-3; 3}

Bình luận (0)
NH
11 tháng 12 2023 lúc 21:14

c, 5.\(x\) (-\(x^2\)) + 1 = 6

   - 5.\(x^3\)       + 1 = 6

   5\(x^3\)                 = 1 - 6

   5\(x^3\)                 = - 5

    \(x^3\)                  =  -1

    \(x\)                    =  - 1

   

Bình luận (0)
NH
11 tháng 12 2023 lúc 21:47

d, 3\(x^2\) + 12\(x\) = 0

   3\(x.\left(x+4\right)\) = 0

   \(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)

   \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-4; 0}

e, 4.\(x.3\) = 4.\(x\)

    12\(x\) - 4\(x\) = 0

      8\(x\)          = 0

         \(x\)        = 0

Bình luận (0)
PL
Xem chi tiết
BN
Xem chi tiết
DT
1 tháng 8 2017 lúc 17:21

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

mà A\(\le0\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\)​ phải bằng 0 đê thỏa mãn điều kiện

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy....

b;c)I hệt câu a nên làm tương tự nhá

d)

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)

B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)

Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)

Vậy....

Bình luận (1)
MS
1 tháng 8 2017 lúc 17:29

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|\ge0\\\left|y+\dfrac{4}{3}\right|\ge0\\\left|z+\dfrac{7}{2}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\Rightarrow x=-\dfrac{9}{2}\\\left|y+\dfrac{4}{3}\right|=0\Rightarrow y=-\dfrac{4}{3}\\\left|z+\dfrac{7}{2}\right|=0\Rightarrow z=-\dfrac{7}{2}\end{matrix}\right.\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|\ge0\\\left|y-\dfrac{2}{5}\right|\ge0\\\left|z+\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{2}{5}\right|=0\Rightarrow y=\dfrac{2}{5}\\\left|z+\dfrac{1}{2}\right|=0\Rightarrow z=-\dfrac{1}{2}\end{matrix}\right.\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|\ge0\\ \left|y+\dfrac{1980}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{matrix}\right.\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1980}{1975}\right|+\left|z-2004\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\Rightarrow x=-\dfrac{19}{5}\\ \left|y+\dfrac{1980}{1975}\right|=0\Rightarrow y=-\dfrac{1980}{1975}\\\left|z-2004\right|=0\Rightarrow z=2004\end{matrix}\right.\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|\ge0\\ \left|y-\dfrac{1}{5}\right|\ge0\\\left|x+y+z\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{1}{5}\right|=0\Rightarrow y=\dfrac{1}{5}\\\left|x+y+z\right|=0\Rightarrow z+-\dfrac{11}{20}=0\Rightarrow z=\dfrac{11}{20}\end{matrix}\right.\)

Bình luận (3)
DD
1 tháng 8 2017 lúc 18:24

Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\Rightarrow A\ge0\)

Mà ĐK đề là \(A\le0\)

\(\Rightarrow A=0\)

\(\left[{}\begin{matrix}\left|x+\dfrac{3}{4}=0\right|\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{2}{5}=0\right|\Rightarrow y=\dfrac{2}{5}\\\left|z+\dfrac{1}{2}=0\right|\Rightarrow z=-\dfrac{1}{2}\end{matrix}\right.\)

Các câu còn lại tương tự nhé

Bình luận (0)
HG
Xem chi tiết