Trong không gian Oxyz cho ba điểm A(2;1;4), B(5;0;0), C(1;-3;1) Có bao nhiêu mặt cầu qua A, B, C đồng thời tiếp xúc với mặt phẳng (Oxy)?
A. 1.
B. 0.
C. 2.
D. Vô số.
Trong không gian Oxyz, cho ba điểm A(-6;0;0), B(0;-4;0), C(0;0;6). Tập hợp tất cả các điểm M trong không gian cách đều ba điểm A, B, C là một đường thẳng có phương trình là
Chọn đáp án C.
Gọi M(x;y;z) ta có
hệ điều kiện
Trong không gian Oxyz cho ba điểm A(-1;1;2), B(0;1;-1), C(x+2;y;-2) thẳng hàng. Tổng x+y bằng
Trong không gian Oxyz, cho ba điểm A(2;-1;4), B(-2;2;-6), C(6;0;-1). Viết phương trình mặt phẳng (ABC).
A. -5x-60y-16z-16 = 0
B. 5x-60y-16z-6 = 0
C. 5x+60y+16z-14 = 0
D. 5x+60y+16z+14 = 0
Trong không gian Oxyz, cho ba điểm A(2;-1;4), B(-2;2;-6), C(6;0;-1). Viết phương trình mặt phẳng (ABC).
Trong không gian Oxyz với hệ tọa độ Oxyz, cho ba điểm A(2;-1;1), B(1;0;4) và C(0;-2;-1). Phương trình mặt phẳng qua A và vuông góc với đường thẳng BC là
A. 2 x + y + 2 z - 5 = 0
B. x + 2 y + 5 z + 5 = 0
C. x - 2 y + 3 z - 7 = 0
D. x + 2 y + 5 z - 5 = 0
Trong không gian với hệ tọa độ Oxyz cho ba điểm A (3;-2;4), B (5; 3;-2), C (0;4;2), đường thẳng d cách đều ba điểm A, B, C có phương trình là:
A . x = 8 3 + 26 t y = 5 3 + 22 t z = 4 3 + 27 t
B . x = 4 + 26 t y = 2 + 22 t z = 9 4 + 27 t
C . x = 11 6 y = 1 6 + 22 t z = 27 t
D . x = 4 + 26 t y = 2 + 38 t z = 9 4 + 27 t
Chọn B
Gọi I là trung điểm của AB suy ra và (P) là mặt phẳng trung trực của đoạn AB.
Mặt phẳng (P) đi qua I và nhận làm vec tơ pháp tuyến có phương trình là:
Gọi J là trung điểm của AC suy ra và (Q) là mặt phẳng trung trực của đoạn AC
Mặt phẳng (Q) đi qua J và nhận làm vec tơ pháp tuyến có phương trình là:
Khi đó d = (P) ∩ (Q)
Ta có d có vectơ chỉ phương và đi qua M là nghiệm của hệ , ta chọn x = 4 suy ra y = 2 và z = 9/4. Vậy
Phương trình tham số của d là:
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(3;-2;-2), B(3;2;0), C(0;2;1). Phương trình mặt phẳng (ABC) là:
A. 2x -3y +6z =0
B. 4y + 2z -3 =0
C. 3x + 2y +1 =0
D. 2y + z -3 =0
Đáp án A
(ABC) qua A(3; -2; -2) và có véc tơ pháp tuyến
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A 3 ; − 2 ; − 2 , B 3 ; 2 ; 0 , C 0 ; 2 ; 1 . Phương trình mặt phẳng (ABC) là:
A. 2 x − 3 y + 6 z = 0
B. 4 y + 2 z − 3 = 0
C. 3 x + 2 y + 1 = 0
D. 2 y + z − 3 = 0
Đáp án A
A B → = 0 ; 4 ; 2 , A C → = − 3 ; 4 ; 3
A B C qua A 3 ; − 2 ; − 2 và có véc tơ pháp tuyến A B → , A C → = 4 ; − 6 ; 12 = 2 2 ; − 3 ; 6
⇒ A B C : 2 x − 3 y + 6 z = 0
Trong không gian Oxyz. Cho ba điểm A(1;2;-1), B(2;-1;3) C (-4;7;5). Độ dài phân giác trong của tam giác ABC ??
Trong không gian Oxyz, cho bốn điểm A(-1;2;0), B(3;1;0), C(0;2;1), D(1;2;2). Trong đó có ba điểm thẳng hàng là
A. A, C, D
B. A, B, D
C. B, C, D
D. A, B, C