CTR: nếu 6*x+11*y chia hết cho 31 thì x+7y không chia hết cho 3 và ngược lại
cho x,y thuộc Z. Chúng tỏ rằng nếu 6x + 11y chia hết cho 31x + 7y cũng chia hết cho 31. Ngược lại x + 7y chia hết cho 31 thì 6x + 11 y cũng chia hết cho 31.
Ta có: 6x+11y=6x+11y+31y=6x+42y=6.(x+7y)
Mà 6 và 31 là 2 số nguyên tố cùng nhau
⇒ x+7y⋮31
x+7y=6.(x+7y)=6x+42y=6x+11y+31y
Mà 6 và 31 là 2 số nguyên tố cùng nhau, 31y⋮31
⇒ 6x+11y⋮31
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
CTR 6x+11y chia hết cho 31 thì x+7y chia hết cho 31. điều ngược lại có đúng ko
Chứng minh rằng : 6.x+11.y chia hết cho 31 thì x+7y chia hết cho 31 và ngược lại
[GIẢI CHI TIẾT NHA;TỚ CHO 3 TICK]
ta có 6*(6x-11y)-5*(x+7y)=31x-31y chia hết cho 31=>6x - 11y chia hết cho 31 thì x + 7y chia hết cho 31. Ngược lại nếu x + 7y chia hết cho 31 thì 6x - 11y chia hết cho 31
ta có 6*(6x+11y)-5*(x+7y)=31x+31y chia hết cho 31=>6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31. Ngược lại nếu x + 7y chia hết cho 31 thì 6x + 11y chia hết cho 31
câu hỏi tương tự có lời giải đó bn
Cho x,y thuộc Z. CMR nếu 6x+11y chia hết cho 31 thì x+ 7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+ 11y cũng chia hết cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
cho x,y thuộc Z.Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.Ngược lại x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
\(6x+11y⋮31\Rightarrow6x+11y+31y=6x+42y=6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
\(x+7y⋮31\Rightarrow6\left(x+7y\right)⋮31\Rightarrow6\left(x+7y\right)-31y=6x+11y⋮31\)
Cho x ;y là các số nguyên chứng tỏ rằng nếu 6x +11 y chia hết 31 thì x+7y cx chia hết cho 31 điều ngược lại có đúng ko
6x + 11y+31 y chia hết cho 31
Suy ra 6x+ 42 y chia hết cho 31
6(x+7y) chia hết cho 31
Vậy x+7y cũng chia hết cho 31 và điều ngược lại cũng đúng
Nếu thấy đúng cho mình cái hi
* Ta có:
Vì
Mà ƯCLN(5,31) = 1
Cho x;y thuộc z
CMR nếu 6x+11y chia hết cho 31 thi x+7y cùng chia hết cho 31. Ngược lại nếu x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
Cho x,y thuộc Z. Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31.
Ngược lại x + 7y chia hết cho 31 thì 6x + 11y cũng chia hết cho 31.
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
cho x,y là các số nguyên. CMR: nếu 6x+11y chia hết cho 31 thì x+7y chia hết cho 31
điều ngược lại thì có đúng không
#)Giải :
Ta có : \(6x+11y⋮31\)
\(\Rightarrow6x+11y+31y⋮31\)
\(\Rightarrow6x+42y⋮31\)
\(\Rightarrow6\left(x+7y\right)⋮31\)
Mà (6;31) = 1 \(\Rightarrow\)y + 7y chia hết cho 31 (đpcm)
Ngược lại thì tương tự thui bạn, và điểu này thì vẫn đúng nhé !
bạn có thể chứng minh điều ngược lại được không ạ