Cho số a = 1 +2+3+4+...+n và số b = 2n +1 với n là số tự nhiên và n>0. Tìm ƯCLN(a,b)
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
Với n là số tự nhiên, hãy tìm ƯCLN của các số sau:
a) n + 2 và n + 3
b) 2n + 1 và 9n + 1
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
Với n là số tự nhiên. Tìm ƯCLN của các số sau: a) 3n+1 và 3n+10 b) 2n+1 và n+3
Lời giải:
a. Gọi d là ƯCLN của $3n+1, 3n+10$
\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)
\(\Rightarrow 9\vdots d\)
\(\Rightarrow d=\left\{1;3;9\right\}\)
Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$
$\Rightarrow d=1$
Vậy ƯCLN $(3n+1,3n+10)=1$
b.
Gọi $d$ là ƯCLN $(2n+1,n+3)$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)
\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)
\(\Rightarrow d\in\left\{1;5\right\}\)
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
Bài 2:
b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.
Khi đó:
$ab=6x.6y=216$
$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
1, Cho n là số tự nhiên khác 0 bất kì. Chứng minh rằng 2n +3 và 8n + 4 là hai số nguyên tố cùng nhau
2, Tìm 2 số a và b biết rằng a + b = 162 và ƯCLN ( a,b) = 18
Bài 1: Tìm số tự nhiên n, sao cho:
a) 2n+5 chia hết cho n+1
b) 4n-7 chia hết cho n-1
c) 10-2n chia hết cho n-2
d) 5n-8 chia hết cho 4-n
e) n^2 +3n+6 chia hết cho n+3
Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100
a) chứng tỏ rằng A chia hết cho 2,3,15
b) A là số Nguyên tố hay Hợp số? Vì sao ?
c) Tìm chữ số tận cùng của A
Bài 3: Tìm ƯCLN
a) 2n+1 và 3n+1
b) 9n+13 và 3n+4
c) 2n+1 và 2n+3
Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+7
Bài 5:Tìm số tự nhiên a,b
a) a x b=12
b) (a-1) (b+2)=7
c) a+b+72 và ƯCLN(a,b)+9
d) a x b= 300 và ƯCLN(a,b)=5
e) ƯCLN(a,b)=12 và BCNN(a,b)= 72
Bài 6 : Chứng tỏ rằng:
a) (10^n + 8 ) chia hết cho 9
b) (10^100+5^3) chia hết cho 3 và 9
c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )
d) (10^9 +10^8 +10^7) chia hết cho 555
Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
Bài 4:
a) Gọi UCLN của 7n+10 và 5n+7 là m
7n+10 chia hết cho m<=>35n+50 chia hết cho m
5n+7 chia hết cho m<=>35n+49 chia hết cho m
=>35n+50-(35n+49) chia hết cho m
1 chia hết cho m
m=1
=> UCLN của 7n+10 và 5n+7 là 1=>7n+10 và 5n+7 là 2 số nguyên tố cùng nha
b)Gọi UCLN cua 2n+3 và 4n+7 là d
2n+3 chia hết cho d <=>4n+6 chia hết cho d
4n+7 chia hết cho d
=>4n+7-(4n+6) chia hết cho d
1 chia hết cho d
d=1
=>UCLN của 4n+7 và 2n+3 là 1=>4n+7 và 2n+3 là 2 số nguyên tố cùng nhau
Bài 1: Tìm số tự nhiên n, sao cho:
a) 2n+5 chia hết cho n+1
b) 4n-7 chia hết cho n-1
c) 10-2n chia hết cho n-2
d) 5n-8 chia hết cho 4-n
e) n^2 +3n+6 chia hết cho n+3
Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100
a) chứng tỏ rằng A chia hết cho 2,3,15
b) A là số Nguyên tố hay Hợp số? Vì sao ?
c) Tìm chữ số tận cùng của A
Bài 3: Tìm ƯCLN
a) 2n+1 và 3n+1
b) 9n+13 và 3n+4
c) 2n+1 và 2n+3
Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+7
Bài 5:Tìm số tự nhiên a,b
a) a x b=12
b) (a-1) (b+2)=7
c) a+b+72 và ƯCLN(a,b)+9
d) a x b= 300 và ƯCLN(a,b)=5
e) ƯCLN(a,b)=12 và BCNN(a,b)= 72
Bài 6 : Chứng tỏ rằng:
a) (10^n + 8 ) chia hết cho 9
b) (10^100+5^3) chia hết cho 3 và 9
c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )
d) (10^9 +10^8 +10^7) chia hết cho 555
Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!
dài thấy mợ luôn để t lm đc bài nào thì t lm
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+2^2+2^3+...+2^100 chia hết cho 2
A=2+2^2+2^3+2^4+...+2^99+2^100
A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số.
c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )
A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0.
A=....0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
Bài 4:
a) Gọi UCLN của 7n+10 và 5n+7 là m
7n+10 chia hết cho m<=>35n+50 chia hết cho m
5n+7 chia hết cho m<=>35n+49 chia hết cho m
=>35n+50-(35n+49) chia hết cho m
1 chia hết cho m
m=1
=> UCLN của 7n+10 và 5n+7 là 1=>7n+10 và 5n+7 là 2 số nguyên tố cùng nha
b)Gọi UCLN cua 2n+3 và 4n+7 là d
2n+3 chia hết cho d <=>4n+6 chia hết cho d
4n+7 chia hết cho d
=>4n+7-(4n+6) chia hết cho d
1 chia hết cho d
d=1
=>UCLN của 4n+7 và 2n+3 là 1=>4n+7 và 2n+3 là 2 số nguyên tố cùng nhau.
bài 5:
a) Ta có bảng:
a 1 2 3 4 6 12
b 12 6 4 3 2 1
Vậy (a,b) thuộc {(1;12)(2;6)(3;4)(4;3)(6;2)(12;1)}
b) Ta có bảng
a-1 1 7
b+2 7 1
a 2 8
b 5 -1
Mà a,b thuộc N Vậy a=2;b=5
c)
a=9a'
b=9b' với UCLN(a',b')=1
a+b=72
9(a'+b')=72
a'+b'=72 : 9=8
mà UCLN(a';b')=1 ta có bảng
a' 1 3 5 7
b' 7 5 3 1
a 9 27 45 63
b 63 45 27 9
vay a;b thuộc{(9;63)(27;45)(45;27)(6