Cho phương trình z 4 + 2 z 2 − 8 = 0 có các nghiệm là z 1 ; z 2 ; z 3 ; z 4 . Tính giá trị biểu thức F = z 1 2 + z 2 2 + z 3 2 + z 4 2
A. F = 4
B. F = − 4
C. F = 2
D. F = − 2
Cho phương trình z 3 + a z 2 + b z + c = 0 nhận z = 2 và z = 1 + i làm các nghiệm của phương trình. Khi đó a - b + c là
Số nghiệm của phương trình với ẩn số phức z: 4z2 + 8|z|2 - 3 = 0 là:
A. 3.
B. 2.
C. 4.
D. 1.
Chọn C.
Gọi z = a + bi là nghiệm của phương trình.
Ta có: 4(a + bi) 2 + 8(a2 + b2) - 3 = 0
4(a2 – b2 + 2abi) + 8( a2 + b2) - 3 = 0
12a2 + 4b2 +8abi - 3 = 0
Vậy phương trình có 4 nghiệm phức.
cho x, y, z là nghiệm bất phương trình \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\xy+yz+zx=4\end{matrix}\right.\)
Chứng minh rằng \(-\dfrac{8}{3}\) ≤ x, y, z ≤ \(\dfrac{8}{3}\)
Gọi S là tổng tất cả các số thực m để phương trình z 2 - 2 z + 1 - m = 0 có nghiệm thức z thỏa mãn z = 2 . Tính S
A. S = -3
B. S = 6
C. S = 10
D. S = 7
Cho phương trình z 3 + a z 2 + b z + c = 0 Nếu z=1-i và z=1 là 2 nghiệm của phương trình thì a - b - c bằng
A. 2
B. 3
C. 5
D. 6
Trên tập số phức, cho phương trình sau : ( z + i)4 + 4z2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R.
2. Phương trình vô nghiệm trên trường số phức C
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0.
B. 1.
C. 3.
D. 2.
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
Cho phương trình: ( z2 - z) ( z + 3) (z + 2) = 10 .Tính tổng tất cả các phần thực của các nghiệm phương trình trên.
A. -1
B. -2
C. -3
D. -4
Chọn D.
Phương trình đã cho tương đương với phương trình
z( z + 2) ( z - 1) ( z + 3)
Hay ( z2 + 2z) ( z2 + 2z - 3) = 10
Đặt t = z2 + 2z. Khi đó phương trình trở thành: t2 - 2t – 10 = 0.
Vậy phương trình có các nghiệm:
Tổng tất cả các phần thực của các nghiệm phương trình đã cho là:
-1+ ( -1) + (-1) + ( -1) = -4.
Xác định tất cả các số thực m để phương trình
z 2 - 2 z + 1 - m = 0 có nghiệm phức z thỏa mãn z = 2 .
A. m = 1 ; m = 9 .
B. m = - 3
C. m = - 3 ; m = 1 ; m = 9 .
D. m = - 3 ; m = 9
Phương trình: ( z + 3 - i ) 2 - 6(z + 3 - i) + 13 = 0 có 2 nghiệm phân biệt. Khẳng định nào sau đây là đúng?
A. Trong 2 nghiệm có một nghiệm bằng 0.
B. Cả 2 nghiệm đều là số thực.
C. Cả 2 nghiệm đều là số thuần ảo.
D. Trong 2 nghiệm có 1 nghiệm là số thực, 1 nghiệm là số thuần ảo.
Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.