Đạo hàm của hàm số y= log(1 - x) bằng
Đạo hàm của hàm số y = log ( 1 - x ) bằng
A. 1 ( x - 1 ) ln 10
B. 1 x - 1
C. 1 1 - x
D. - 1 ( x - 1 ) ln 10
Đạo hàm của hàm số y=log(1-x) là
A. 1 x - 1 ln 10
B. 1 1 - x
C. 1 1 - x ln 10
D. 1 x - 1
Đạo hàm của hàm số y=log(1-x) là
Đạo hàm của hàm số y = log ( 1 + x + 1 ) là
A.
B.
C.
D.
Tính đạo hàm của các hàm số sau:
a) \(y = \left( {{x^2} + 3x - 1} \right){e^x}\);
b) \(y = {x^3}{\log _2}x\).
a: \(y'=\left(x^2+3x-1\right)'\cdot e^x+\left(x^2+3x-1\right)\cdot\left(e^x\right)'\)
\(=e^x\left(2x+3\right)+\left(x^2+3x-1\right)\cdot e^x\)
\(=e^x\left(x^2+5x+2\right)\)
b: \(y'=\left(x^3\right)'\cdot log_2x+x^3\cdot\left(log_2x\right)'\)
\(=3x^2\cdot log_2x+x^3\cdot\dfrac{1}{x\cdot ln2}\)
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = \frac{1}{{2x + 3}}\)
b) \(y = {\log _3}x\)
c) \(y = {2^x}\)
\(a,y'=\left(\dfrac{1}{2x+3}\right)'=-\dfrac{2}{\left(2x+3\right)^2}\\ \Rightarrow y''=\dfrac{2\cdot\left[\left(2x+3\right)^2\right]'}{\left(2x+3\right)^4}=\dfrac{8}{\left(2x+3\right)^3}\\ b,y'=\left(log_3x\right)'=\dfrac{1}{xln3}\\ \Rightarrow y''=-\dfrac{1}{x^2ln3}\\ c,y'=\left(2^x\right)'=2^x\cdot ln2\\ \Rightarrow y''=2^x\cdot\left(ln2\right)^2\)
Tính đạo hàm của các hàm số sau:
a) \(y = {2^{3x - {x^2}}};\)
b) \(y = {\log _3}\left( {4x + 1} \right).\)
tham khảo:
a)y′=2\(^{3x-x^2}\).ln2.(3−2x)
b) y′\(\dfrac{4}{ln3}\).\(\dfrac{1}{4x+1}\).4=\(\dfrac{4}{\left(4x+1\right)ln3}\)
Tìm đạo hàm của mỗi hàm số sau:
a) \(y = \sin 3x + {\sin ^2}x\)
b) \(y = {\log _2}(2x + 1) + {3^{ - 2x + 1}}\)
a: \(y'=\left(sin3x\right)'+\left(sin^2x\right)'=3\cdot cos3x+sin\left(x+pi\right)\)
b: \(y'=\left(log_2\left(2x+1\right)\right)'+\left(3^{-2x+1}\right)'\)
\(=\dfrac{2}{\left(2n+1\right)\cdot ln2}-2\cdot3^{-2x+1}\cdot ln3\)
Tính đạo hàm của các hàm số sau:
a) \(y = x{\log _2}x\);
b) \(y = {x^3}{e^x}\).
a: \(y'=\left(x\cdot log_2x\right)'=log_2x+x\cdot\dfrac{1}{x\cdot ln2}=log_2x+\dfrac{1}{ln2}\)
b: \(y'=\left(x^3e^x\right)'=\left(x^3\right)'\cdot e^x+x^3\cdot\left(e^x\right)'\)
\(=3x^2\cdot e^x+x^3\cdot e^x\)