Những câu hỏi liên quan
TN
Xem chi tiết
MU
26 tháng 4 2015 lúc 21:08

\(\frac{-3}{x-1}\)nguyên khi và chỉ khi -3 chia hết cho x - 1 hay x - 1 là ước của 3

\(\frac{-4}{2x-1}\)nguyên khi và chỉ khi -4 chia hết cho 2x - 1 hay 2x - 1 là ước của 4

Lấy 3x + 7 chia x - 1 => \(\frac{4}{x-1}\)nguyên khi và chỉ khi 4 chia hết cho x - 1 hay x - 1 là ước của 4

Mk chỉ làm đc vậy thui à!!!!!

      

Bình luận (0)
LT
Xem chi tiết
EC
16 tháng 9 2018 lúc 13:37

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

Bình luận (0)
H24
16 tháng 9 2018 lúc 13:47

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)

Bình luận (0)
H24
16 tháng 9 2018 lúc 13:58

a, Ta có: \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)

Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(MAX_P=2010\Leftrightarrow x=-1\)

Bình luận (0)
LH
Xem chi tiết
NP
21 tháng 6 2019 lúc 16:49

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

Bình luận (0)
DL
Xem chi tiết
GL
14 tháng 6 2019 lúc 22:45

\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)

Để A có giá trị nguyên thì

\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)

\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)

\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Bình luận (0)
DL
15 tháng 6 2019 lúc 7:37

Có bạn nào làm được câu b không??

Bình luận (0)
DA
15 tháng 6 2019 lúc 8:20

A=\(\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)

Để A có giá trị nguyên thì:

x-1 \(⋮\)2x-3

=> 2x-2 \(⋮\)2x-3

=> 2x-3-(2x-2) \(⋮\)2x-3

=> 1 chia hết cho 2x-3

2x-3=1.              hoặc.   2x-3=-1

x=1.                                x=2

Bình luận (0)
VT
Xem chi tiết
VX
Xem chi tiết
CS
4 tháng 12 2018 lúc 20:19

Nguyên Dương Hay Nguyên Âm

Bình luận (0)
DN
4 tháng 12 2018 lúc 20:19

\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)

Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)

Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)

Bình luận (0)
TC
Xem chi tiết
NH
Xem chi tiết
SG
6 tháng 9 2016 lúc 22:39

Bài 1:

\(A=\frac{10x-9}{2x-3}=\frac{10x-15+6}{2x-3}=\frac{5.\left(2x-3\right)+6}{2x-3}=\frac{5.\left(2x-3\right)}{2x-3}+\frac{6}{2x-3}=5+\frac{6}{2x-3}\)

Để A nguyên thì \(\frac{6}{2x-3}\)nguyên

=> 6 chia hết cho 2x - 3

=> \(2x-3\inƯ\left(6\right)\)

Mà 2x - 3 là số lẻ => \(2x-3\in\left\{1;-1;3;-3\right\}\)

=> \(2x\in\left\{4;2;6;0\right\}\)

=> \(x\in\left\{2;1;3;0\right\}\)

Vậy \(x\in\left\{2;1;3;0\right\}\)thỏa mãn đề bài

Bài 2:

\(3+\frac{a}{b}=3.\frac{a}{b}\)

=> \(3.\frac{a}{b}-\frac{a}{b}=3\)

=> \(2.\frac{a}{b}=3\)

=> \(\frac{a}{b}=\frac{3}{2}\)

Vậy \(\frac{a}{b}=\frac{3}{2}\)

Bình luận (2)
ND
Xem chi tiết
NT
10 tháng 3 2016 lúc 21:02

để 3x+7 : hết cho x-1 thì (x-10 phải thuộc Ư?(4)

Ư(4)=+-1;=-2;=-4

rồi giả ra từng trường hợp thì tìm ra x em à 

Bình luận (0)