Những câu hỏi liên quan
TD
Xem chi tiết
DE
29 tháng 7 2019 lúc 15:20

Gọi 4 stn liên tiếp là k, k+1, k+2, k+3

Ta có k(k+1)(k+2)(k+3)+1

= k(k+3)(k+1)(k+2)+1

= (k2 +3k)(k2 +3k+2)+1

Đặt k+3k = A

= A(A+2)+1

= A+2A + 1

= (A+1)2 => đpcm

Bình luận (0)
H24
29 tháng 7 2019 lúc 15:28

#)Giải :

Gọi bốn số tự nhiên liên tiếp là a, a+1, a+2, a+3

Theo đề bài, ta có : \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

\(=\left(a^3+3a+1-1\right)\left(a^3+3a+1+1\right)-1\)

\(=\left(a^3+3a+1\right)^2-1^2-1\)

\(=\left(a^3+3a+1\right)^2\left(đpcm\right)\)

Bình luận (0)
PN
Xem chi tiết
DH
11 tháng 3 2017 lúc 20:55

a ) Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\)

Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n^4+6n^3+11n^2+6n+1=\left(x^2+3x+1\right)^2\) là số chính phương (đpcm)

b ) \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

\(\Rightarrow a+1\) thuộc Ư(3) = { -3; -1; 1; 3 }

=> a = { - 4; - 2; 0; 2 }

Bình luận (0)
H24
12 tháng 3 2017 lúc 11:18

a = { -4 ; - 2 ; 1 ; 3}

  nha

Bình luận (0)
NN
Xem chi tiết
FC
Xem chi tiết
FC
Xem chi tiết
DC
Xem chi tiết
DO
28 tháng 4 2018 lúc 13:38

từ giả thiết , suy ra p chia hết cho 2 và 3 nhưng không chia hết cho 4 .

+) Vì p chia hết cho 3 nên p - 1 chia cho 3 dư 2 , suy ra p - 1 không là số chính phương. 

+) Vì p chia hết cho 2 nhưng không chia hết cho 4 nên p chia 4 dư 2

suy ra p + 1 chia 4 dư 3 . 

\(\Rightarrow\)p + 1 không là số chính phương

Vậy p - 1 và p + 1 không là số chính phương

Bình luận (0)
H24
Xem chi tiết
LT
23 tháng 8 2017 lúc 20:51

Ta gọi :3SND lần lượt là\(N,N+1,N+2\left(N\in Z\right)\)

\(N\left(N+1\right)\left(N+2\right)=\left(N^2+N\right)\left(N+2\right)=N^3+2N^2+N^2+2N=N^3+3N^2+2N\)

\(N^3< N^3+3N^2+2N< N^3+3N^2+3N+1\)

\(\Rightarrow N^3< N^3+3N^2+2N< \left(N+1\right)^3\left(1\right)\)

Vì \(N\)là SND nên từ \(\left(1\right)\)

Ta có:\(n\left(n+1\right)\left(n+2\right)\)ko là LP của 1 STN

Bình luận (0)
NA
Xem chi tiết
KN
Xem chi tiết