Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 6 2019 lúc 10:58

Đáp án A

Ta có: lim x → + ∞ y = 0 ⇒  đồ thị hàm số có 1 tiệm cận ngang là y = 0 .

Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0  có 2 nghiệm phân biệt

x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.  

Bình luận (0)
HM
Xem chi tiết
NL
7 tháng 8 2021 lúc 19:51

Do mẫu có bậc 2 còn tử bậc 1 \(\Rightarrow\)hàm không có tiệm cận đứng khi và chỉ khi phương trình \(x^2-2mx+1=0\) vô nghiệm

\(\Leftrightarrow\Delta'=m^2-1< 0\)

\(\Rightarrow-1< m< 1\)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 7 2019 lúc 10:36

Bình luận (0)
H24
Xem chi tiết
HM
Xem chi tiết
NL
7 tháng 8 2021 lúc 19:49

Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)

\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)

Bình luận (0)
HM
Xem chi tiết
NL
7 tháng 8 2021 lúc 19:40

ĐKXĐ: \(x\le1\)

Hàm có tiệm cận đứng khi và chỉ khi phương trình:

\(x-m=0\) có nghiệm \(x< 1\)

\(\Leftrightarrow m< 1\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 1 2018 lúc 17:48

Chọn C

[Phương pháp tự luận]

Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m

 

Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1

Hệ số góc đt AB là  k = - ( m - 1 ) 2

Đt AB vuông góc với đường thẳng y = x + 2

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 12 2019 lúc 17:35

+ Ta có  đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m

Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1

Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)

+ Hệ số góc đường thẳng AB  là :k= - ( m-1) 2

+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1

Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1) 

Chọn C.

Bình luận (0)
HM
Xem chi tiết
NL
7 tháng 8 2021 lúc 19:39

Với \(m=0\) ko thỏa mãn

Với \(m\ne0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)

Bình luận (0)