Cho a thuộc Z, b>0, n thuộc N*
Hãy so sánh số hữu tỉ a/b và (a+n)/(b+n)
Cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh số hữu tỉ a/b và a+n/b+n
mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự
Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0
Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)
\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)
Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)
Ta có:a/b=a.(b+n)
=a.b+a.n/b.(b+n)
a+n/b+n=(a+n).b/(b+n).b
=a.b+b.n/b.(b+n)
-->a/b<a+n/b+n
Cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh số hữu tỉ a/b và (a+n)/(b+n)
Lời giải:
Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$
$\Rightarrow {a}{b}>\frac{a+n}{b+n}$
Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$
$\Rightarrow {a}{b}=\frac{a+n}{b+n}$
Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$
$\Rightarrow {a}{b}<\frac{a+n}{b+n}$
Cho a,b ,n thuộc Z và b > 0 , n > 0 Hãy so sánh số hữu tỉ a/b và a+n/b+n
cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh 2 số hữu tỉ a/b và a+n/b+n
theo minh thi
neu a<b thi ta co a(b+n) va b(a+n)
ab+an và ab + bn
vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n
neu a>b thi ta co a(b+n) va b(a+n)
ab+an va ab+bn
vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n
neu a=b thi a(b+n) và b(a+n)
ab+an và ab+ bn
vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n
Cho a thuộc Z, b thuộc Z , b > 0 , n thuộc N*. Hãy so sánh hai số hữu tỉ \(\frac{a}{b}và\frac{a+n}{b+n}\)
(+) Th1 : a = b
=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
(+) th2 : a < b
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}
Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n)
<=> a.b+a.n<b.a+b.n
<=> a.n<b.n
<=> a<b =>a/b<a+n/b+n <=> a<b
Tương tự: a/b>a+n/b+n <=> a>b
a) Cho a, b , n thuộc Z và b > 0, n > 0
hãy so sánh hai số hữu tỉ a/b và a+n/b+n
Áp dụng kết quả trên hãy so sánh 2/7 và 4/9; -17/25 và -14/28; -31/19 và -21/29.
a)có thể kết luận gì về số hữu tỉ a/b (a,b thuộc Z,b khác 0)
b)cho a,b,n thuộc Z và b>0,n>0
hãy so sánh hai số hữu tỉ a/b và a+n/b+n
c)chứng tỏ rằng trên trục số ,giữa 2 điểm biểu diễn hai số hữu tỉ khác nhau bao giờ cũng có ít nhất một điểm hữu tỉ nữa
d)so sánh
2/7 và 4/9,-17/25 và -14/28;-31/19 và -21/29
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
cho a thuộc Z , b > 0 , n thuộc N* . Hãy so sánh hai số hữu tỉ a/b và (a+n)/(b+n)
Mn ơi giúp mik vs
Ai trả lời nhanh nhất và chi tiết nhất mik like cho
Cho a,b thuộc Z, b>o, n thuộc n*
So sánh số hữu tỉ a/b và a+n/b+n
\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{a.b+a.n}{b^2+b.n}\)
\(\frac{a+n}{b+n}=\frac{b.\left(a+n\right)}{b.\left(b+n\right)}=\frac{a.b+b.n}{b^2+b.n}\)
Với a=b thì:
\(\frac{a}{b}=1;\frac{a+n}{b+n}=1\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)
Với a<b thì:
\(\frac{a.b+a.n}{b^2+b.n}\frac{a+n}{b+n}\)