Tìm số nguyên n lớn nhất thỏa mãn n 360 < 3 480
A. n = 3
B. n = 4
C. n = 2
D. n = 5
Tìm các số nguyên dương n không lớn hơn 2015 thỏa mãn [n/2]+[n/3]+[n/4]=n/2+n/3+n/4 ( kí hiệu [a] là số nguyên lớn nhất không vượt quá a)
Ta có: \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]=\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\)
Mà \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]\) có kết quả là số nguyên
Nên \(\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\) cũng phải có kết quả là số nguyên. Hay \(\frac{n}{2};\frac{n}{3};\frac{n}{4}\) đều là số nguyên.
=> n chia hết cho cả 2;3 và 4
Vậy n sẽ là Bội của 2;3;4 hay n = 24k (k \(\in\) N*, k < 84) (BCNN(2;3;4)=24)
\(n\in\left\{24;48;72;96;120;...;1992\right\}\) Không có số 0 vì số 0 không phải là số nguyên dương.
các bạn ơi! Giúp mình với
a, tìm a,b biết a+b=ab=a/b
b, Giá trị lớn nhất của A= x + 1/2 - |x - 2/3|
c, Tính: (2^2)^2^1
d, Tìm x: (2/7) 6x-7=1
e, Tìm x, biết x thuộc Z: (x+2)x<0
g, Tìm số tự nhiên n lớn nhất để (2^4)^9 chia hết cho 32^n
h, Tìm x, y,z sao cho (2x-4^2) +|y-5| +(x+y-z)^6=0
j, Giá trị của x thỏa mãn |x^2+|x-1||=x^2
k, Số nguyên dương n lớn nhất thỏa mãn: n^200<5^300
l, Tìm x, y biết (2x)^3=y^3
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11
a, Tìm số nguyên n để biểu thức \(P=\frac{n+2}{n-7}\)đạt giá trị lớn nhất. Tìm giá trị đó
b, Cho 4 số a,b,c,d khác 0 thỏa mãn \(b^2=ac\); \(c^2=bd\); \(b^3+c^3+d^3\ne0\)
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
\(P=\frac{n-7+9}{n-7}=1+\frac{9}{n-7}\)
\(\left(\text{Để P}\right)max\Rightarrow\left(\frac{9}{n-7}\right)max\Rightarrow\left(n-7\right)min\text{ và }n-7>0\left(\text{vì }9>0\right)\)
n-7 min và n-7>0 => n-7=1 => n=8. Vậy MaxP=10
\(\hept{\begin{cases}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{cases}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
áp dụng t.c dtsbn:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)
câu b khúc cuối giải thích thêm đi bạn
1) chọn đáp án đúng:
số nguyên n mà ( n + 1 ) . ( n + 3 ) < 0 là :
A) - 5
b) - 4
C) - 3
D) - 2
2) tìm số nguyên n thỏa mãn từng điều kiện sau :
a) ( n + 1 ) . ( n + 3 ) = 0
b) ( | n | + 2 ) . ( n^2 - 1 ) = 0
giúp mình nhá mình đang cần gấp !!!!
1) chọn D
2)a) <=> n+1=0 hoặc n+3=0 <=> n=-1 hoặc n=-3
b)<=>/n/+2=0 hoặc n^2-1=0
<=>x=1 hoặc x=-1
tik cho mk nha
Tìm số nguyên dương n thỏa mãn:
a)A= 4n-5/n+2 là số nguyên b) B= 7n+3/n-3 là số nguyên
a) A=4n-5/n+2 = 4(n+2)-13/n+2
= 4 - 13/n+2
Để A có giá trị nguyên
=> 13/n+2 đạt giá trị nguyên
=> 13 chia hết cho (n+2)
=> n+2 thuộc Ư(13)={±1;±13}
Do n là số nguyên dương => n+2 ≥ 3 và n+2 nguyên
Hay n+2 =13
=> n=11
Vậy n=11 là giá trị nguyên dương thỏa mãn đề.
A = \(\dfrac{4n-5}{n+2}\) (đk n \(\ne\) - 2; n \(\in\) Z)
A \(\in\) Z ⇔ 4n - 5 ⋮ n + 2
4n + 8 - 13 ⋮ n + 2
4.(n + 2) - 13 ⋮ n + 2
13 ⋮ n + 2
n + 2 \(\in\) Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
n + 2 | -13 | -1 | 1 | 13 |
n | -15 | -3 | -1 | 11 |
Theo bảng trên ta có: n \(\in\) {-15; -3; -1; 11}
Vì n nguyên dương nên n = 11
B = 7n+3/n-3 = 7(n-3)+24/n-3
= 7 + 24/n-3
Để B đạt giá trị nguyên
=> 24/n-3 cũng phải đạt giá trị nguyên
=> 24 chia hết cho (n-3)
=> n-3 thuộc Ư(24)={±1;±2;±3;±4;±6;±8;±12;±24}
Do n nguyên dương => n-3≥-2 và n-3 nguyên
Hay n-3 thuộc {-2;-1;1;2;3;4;6;8;12;24}
=> n thuộc {1;2;4;5;6;7;9;11;15;27}
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
1. Cho 2 số nguyên tố m và n thỏa mãn 5m + 7n = 198. Tìm m + n
2. a, b, c là ba số nguyên tố, biết tổng nghịch đảo của chúng là \(\frac{167}{385}\). Tìm a, b,c
3. Một số có 9 chữ số được tạo bởi các chữ số 1; 2; 3; ... ; 9, mỗi chữ số chỉ xuất hiện 1 lần. Tìm số lớn nhất chia hết cho 11.
4. Giá trị lớn nhất của \(|x-1|+|x+2|+|x+3|\)
5. Cho \(m+|m|+n=8\) và \(|n|+m-n=9\). Tính m - n
4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).
Cho p/s:
A=n+12/n-1(n thuộc z)
a)Số nguyên N phải thỏa mãn điều kiện j để A tồn tại
b)Tìm p/s A khi n=0,n=5,n=7
c)Với giá trị nào của n thì A là số nguyên
d)Tìm giá trị nhỏ nhất của A
e)Tìm giá trị lớn nhất của A
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ gt \(\Rightarrow n,k\ge2\)
Ta có:
\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác:
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)
Vậy bộ số (n,k,p)=(2,2,5)
\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).
Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).
+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\)
+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\)
\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)
\(\Rightarrow6⋮n^2+n-1\).
Không tồn tại n > 2 thoả mãn
Vậy...