chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
chứng tỏ rằng:A=1+2+2^2+2^3+.....+2^38+2^39 là hợp số (đề thi )
\(A=1+2+2^2+2^3+...+2^{38}+2^{39}\)
\(A=2^0+2^1+2^2+2^3+...+2^{38}+2^{39}\)
\(A=2^0+2^2\left(1+2^1+2^2+2^3\right)+2^6\left(1+2^1+2^2+2^3\right)+...+2^{36}\left(1+2^1+2^2+2^3\right)\)
\(A=2^0+2^2.15+2^6.15+...+2^{36}.15\)
\(A=2^0+15\left(2^2+2^6+...+2^{36}\right)\)
\(2^0+15=16\)=> 16 là hợp số
\(\Leftrightarrowđpct\)
Địa chỉ mua bimbim : Số 38 đường NGuyễn Cảnh Chân TP Vinh Nghệ AN
Chứng tỏ rằng:
a, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}< 1\)
b, \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\).
b. Có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\).
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)
A=1+32+34+...+32006
Chứng tỏ rằng:A chia 13 dư 10
Bài 1. Chứng minh rằng:
a) Chứng tỏ rằng 3/2 và -1/3 là các nghiệm của đa thức P(x)=6x2 -7x- 3
b) Chứng tỏ rằng -1/2 và 3 là các nghiệm của đa thức 2x2 -5x- 3
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
B,Chứng tỏ rằng:A=3^1+3^2+3^3+.....+3^60 chia hết cho 13
B=4+42+43+...+423+424.Chứng tỏ rằng:A chia hết chia hết cho 20,21,420
Chứng Tỏ Rằng:A=3n+2-2n+2+3n-2n chia hết cho10
mọi n thuộcN*
\(A=3^{n+2}-2^{n+2}+3^n-2^n=9\cdot3^n+3^n-\left(4\cdot2^n+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)=10\cdot3^n-2\cdot5\cdot2^{n-1}=10\cdot\left(3^n-2^{n-1}\right)\)
Với mọi n thuộc N* thì \(2^{n-1}\)là 1 số nguyên nên A chia hết cho 10. (ĐPCM)
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
Biết n!=1.2.3.....n (n> hoặc =2)
chứng tỏ rằng:A=1/2!+2/3!+.......+2013/2014!<1