Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 5 2017 lúc 17:11

Chọn A. 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 8 2018 lúc 15:14

Đáp án A

Bình luận (0)
QR
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 11 2018 lúc 10:37

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2017 lúc 16:17

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

Bình luận (0)
MT
Xem chi tiết
PB
Xem chi tiết
CT
15 tháng 12 2017 lúc 5:45

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 1 2019 lúc 14:00

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

∆ ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y CT  = y(1) = (16/3).

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 7 2018 lúc 17:39

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

Δ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y C T  = y(1) = (16/3).

Bình luận (0)