Biết ∫ x + 1 ( x - 1 ) ( x - 2 ) d x = a ln x - 1 + b ln x - 2 + C , ( a , b ∈ ℝ ) . Tính giá trị của biểu thức
A. a+b =1
B. a+b =5
C. a+b =-5
D. a+b =-1
tìm x , biết ; 1/3 + 1/6 + 1/10 + ... + 2/x + (x +1) = 2007/2009 , biết x thuộc N*
1, Tìm x, biết \(x^2\) – 36 = 0
A. x = 6. B. x = -6.
C. x = 6; x = -6. D. x = 36 hoặc x = - 36.
2, Tìm x, biết \(x^3\) – 3\(x^2\) + 3x - 1 = 0
A. x = 1. B. x = -1. C. x = 0. D. x = 2.
Tìm x, biết:
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)-1/x=1/2010
Ai biết thì trả lời giùm mình với nhe!!!
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)-1/x=1/2010
1/x(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)-1/x=1/2010
1/x(x+1)+1/(x+1)-1/(x+3)-1/x=1/2010
-1/x+1 +(x+3)-(x+1)/(x+1)(x+3)=1/2010
-1/x+3=1/2010
x+3=-2010
x=-2013
Tìm x biết (1 - x)/(x^2 + x + 1) - (x - 1)/(x^2 - x + 1) = 3/[x.(x^4 + x^2 + 1)]
\(\frac{1-x}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{\left[x\left(x^4+x^2+1\right)\right]}\)
\(\Leftrightarrow\frac{\left(1-x\right)x\left(x^2-x+1\right)\left(x^4+x^2+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)\(-\)\(\frac{x\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)\(=\)\(\frac{3\left(x^2-x+1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)}\)
\(\Rightarrow\left(1-x\right)x\left(x^2-x+1\right)\left(x^4+x^2+1\right)-x\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)=\)\(3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x-x^2\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)-\left(x^2-x\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)=\)\(\left(3x^2-3x+3\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^3-x^2+x-x^4+x^3-x^2\right)\left(x^4+x^2+1\right)-\left(x^4+x^3+x^2-x^3-x^2-x\right)\left(x^4+x^2+1\right)=\) \(3x^4+3x^3+3x^2-3x^3-3x^2-3x+3x^2+3x+3\)
\(\Leftrightarrow\left(2x^3-2x^2+x-x^4\right)\left(x^4+x^2+1\right)-\left(x^4-x\right)\left(x^4+x+1\right)=3x^4+3x^2+3\)
\(\Leftrightarrow\left(x^4+x^2+1\right)\left(2x^3-2x^2+x-x^4-x^4+x\right)=3x^4+3x^2+3\)
\(\Leftrightarrow\left(x^4+x^2+1\right)\left(2x^3-2x^2+2x-2x^4\right)=3x^4+3x^2+3\)
\(\Leftrightarrow2x^7-2x^6+2x^5-2x^8+2x^5-2x^4+2x^3-2x+2x^3-2x^2+2x-2x^4-3x^4-3x^2-3=0\)
\(\Leftrightarrow2x^7-2x^6+4x^5-2x^8-7x^4+x^2-3=0\)
Đến đây thì chịu òi :^ Sr nha
\(\frac{1-x}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
=> \(\left(1-x\right)\left(\frac{1}{x^2+x+1}+\frac{1}{x^2-x+1}\right)=\frac{3}{x\left(x^4+x^2+1\right)}\)
<=>\(\left(1-x\right)\left(2x^2+2\right).x=3\)
Do \(2x^2+2>0\)
=> \(\left(1-x\right).x>0\)
=> \(0< x< 1\)=> \(2x^2+2< 4\)
Pt<=> \(\left(x-x^2\right)\left(2x^2+2\right)=3\)
Mà \(x-x^2\le\frac{1}{4};2x^2+2< 4\)
=> \(VT< 1\)
=> PT vô nghiệm
Bài 1 : Tìm x , biết :
a. |x-1|+|x-2|+....+|x-8| = 22
b. |x-1|+|x-2|+|x-3|+...+|x-100| = 2500
Bài 2 :
Tìm x , biết :
|x+1|+|x+2|+....+|x+100| = 605.x
Giúp tớ với ?
............................. Đấng Ed bảo ko chắc cho lắm nên sai thì sr nhé -,-
\(a)\)\(\left|x-1\right|+\left|x-2\right|+...+\left|x-8\right|=22\)
+) Với \(x\ge8\) ta có :
\(x-1+x-2+...+x-8=22\)
\(\Leftrightarrow\)\(8x-36=22\)
\(\Leftrightarrow\)\(x=\frac{29}{4}\)( không thỏa mãn )
+) Với \(x< 1\) ta có :
\(1-x+2-x+...+8-x=22\)
\(\Leftrightarrow\)\(36-8x=22\)
\(\Leftrightarrow\)\(x=\frac{7}{4}\) ( không thỏa mãn )
Vậy không có x thỏa mãn đề bài
\(b)\)\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=2500\)
+) Với \(x\ge100\) ta có :
\(x-1+x-2+x-3+...+x-100=2500\)
\(\Leftrightarrow\)\(100x-5050=2500\)
\(\Leftrightarrow\)\(x=\frac{151}{2}\) ( không thỏa mãn )
+) Với \(x< 1\) ta có :
\(1-x+2-x+3-x+...+100-x=2500\)
\(\Leftrightarrow\)\(5050-100x=2500\)
\(\Leftrightarrow\)\(x=\frac{51}{2}\) ( không thỏa mãn )
Vậy không có x thỏa mãn đề bài
Bài 2 :
+) Với \(x\ge-1\) ta có :
\(x+1+x+2+...+x+100=605x\)
\(\Leftrightarrow\)\(100x+5050=605x\)
\(\Leftrightarrow\)\(x=10\) ( thỏa mãn )
+) Với \(x< -100\) ta có :
\(-x-1-x-2-...-x-100=605x\)
\(\Leftrightarrow\)\(-100x-5050=605x\)
\(\Leftrightarrow\)\(x=\frac{-1010}{141}\) ( không thỏa mãn )
Vậy \(x=10\)
~ Đấng phắn ~
Tìm X biết (1-1/2)x(1-1/3) x (1-1/4)x...............x(1-1/X)=0,01
(1-1/2)x(1-1/3) x (1-1/4)x...............x(1-1/X)=0,01
<=>\(\frac{1}{2}.\frac{2}{3}...\frac{x-1}{x}=0,01\)
<=>\(\frac{1}{x}=0,01\)
<=>x=100
tính f'(x) biết f(x) = \(\dfrac{x^2}{x+1}\)
tính y'(0) biết y = \(\dfrac{x}{x+1}\)
\(f'\left(x\right)=\dfrac{\left(x^2\right)'\cdot\left(x+1\right)-x^2\cdot\left(x+1\right)'}{\left(x+1\right)^2}\)
\(=\dfrac{2x\left(x+1\right)-x^2}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)
\(y'=\dfrac{x'\left(x+1\right)-x\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{x+1-x}{\left(x+1\right)^2}=\dfrac{1}{\left(x+1\right)^2}\)
\(y'\left(0\right)=\dfrac{1}{\left(0+1\right)^2}=1\)
Tìm x : biết 1 / 1 x 2 + 1 / 2 x 3 + 1 / 3 x 4 +……+ 1 / ( x – 1) . x = 15 / 16
1 / 1 x 2 = 1-1/2 và 1/2x3 = (1/2)-(1/3) tương tự đến 1/(x-1).x=(1/x-1)-(1/x). Cuối cùng ta có phép tính 1+(1/x-1)-(1/x)=15/16
Tìm x :
biết 1 / 1 x 2 + 1 / 2 x 3 + 1 / 3 x 4 +……+ 1 / ( x – 1) . x = 15 / 16
1 / 1 x 2 = 1-1/2 và 1/2x3 = (1/2)-(1/3) tương tự đến 1/(x-1).x=(1/x-1)-(1/x).
Cuối cùng ta có phép tính
1+(1/x-1)-(1/x)=15/16.
Tìm x biết:
1/x(x+1)+1/(x+1)(x+2)=2x+5/x.(x+2)(x+1)