Cho bất phương trình log 2 x 2 - 2 x + m + 4 log 4 x 2 - 2 x + m ≤ 5 . Biết a ; b tập tất cả giá trị của tham số m để bất phương trình thỏa mãn với mọi x thuộc 0 ; 2 . Tính a + b
A. a + b = 6
B. a + b = 2
C. a + b = 0
D. a + b = 4
Giải các bất phương trình sau:
a) \({\log _2}\left( {x - 2} \right) < 2\);
b) \(\log \left( {x + 1} \right) \ge \log \left( {2x - 1} \right)\).
a, ĐK: \(x-2>0\Rightarrow x>2\)
\(log_2\left(x-2\right)< 2\\ \Leftrightarrow x-2< 4\\ \Leftrightarrow x< 6\)
Kết hợp với ĐKXĐ, ta được: \(2< x< 6\)
b, ĐK: \(2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)
\(log\left(x+1\right)\ge log\left(2x-1\right)\\ \Leftrightarrow x+1\ge2x-1\\ \Leftrightarrow x\le2\)
Kết hợp với ĐKXĐ, ta được: \(\dfrac{1}{2}< x\le2\)
Giải các bất phương trình sau:
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right);\)
b) \(2\log \left( {2x + 1} \right) > 3.\)
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\) (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow - 1 < x < 2\))
\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)
Mà – 1 < x < 2 nên x + 1 > 0
\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)
KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)
b) \(2\log \left( {2x + 1} \right) > 3\) (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))
\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10} - 1}}{2}\end{array}\)
KHĐK ta có \(x > \frac{{10\sqrt {10} - 1}}{2}\)
Giải các bất phương trình sau:
a) \({\log _{\frac{1}{3}}}\left( {x + 1} \right) < 2\);
b) \({\log _5}\left( {x + 2} \right) \le 1\).
a, ĐK: \(x+1>0\Leftrightarrow x>-1\)
\(log_{\dfrac{1}{3}}\left(x+1\right)< 2\\ \Leftrightarrow x+1>\dfrac{1}{9}\Leftrightarrow x>-\dfrac{8}{9}\)
Kết hợp với ĐKXĐ, ta được: \(x>-\dfrac{8}{9}\)
b, ĐK: \(x+2>0\Leftrightarrow x>-2\)
\(log_5\left(x+2\right)\le1\\ \Leftrightarrow x+2\le5\\ \Leftrightarrow x\le3\)
Kết hợp với ĐKXĐ, ta được: \(-2< x\le3\)
Luyện tập – Vận dụng 8
Giải mỗi bất phương trình sau:
a) \({\log _3}x < 2\)
b) \({\log _{\frac{1}{4}}}\left( {x - 5} \right) \ge - 2\)
a, Điều kiện: x > 0
\(log_3\left(x\right)< 2\\ \Rightarrow0< x< 9\)
b, Điều kiện: x > 5
\(log_{\dfrac{1}{4}}\left(x-5\right)\ge-2\\ \Rightarrow x-5\le16\\ \Leftrightarrow5< x\le21\)
Có bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình dưới đây:
log (x - 40) + log (60 - x) < 2?
A. 20
B. 10
C. Vô số
D. 18
Đáp án D
Điều kiện 40 < x < 60
Vậy x cần tìm theo yêu cầu đề là các số nguyên dương chạy từ 41 đến 59; trừ giá trị 50. Có tất cả 18 giá trị thỏa mãn.
Cho đồ thị của hàm số \(y = {\log _2}x\) và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình \({\log _2}x > 2.\)
Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)
\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)
Tìm tập nghiệm của bất phương trình log ( x - 21 ) < 2 - log x
A. (-4; 25)
B. (0; 25)
C. (21; 25)
D. (25; +∞)
Tìm số nghiệm nguyên của bất phương trình log 5 2 ( 3 x - 2 ) log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Đề bài
Giải mỗi bất phương trình sau:
a) \({3^x} > \frac{1}{{243}}\)
b) \({\left( {\frac{2}{3}} \right)^{3x - 7}} \le \frac{3}{2}\)
c) \({4^{x + 3}} \ge {32^x}\)
d) \(\log (x - 1) < 0\)
e) \({\log _{\frac{1}{5}}}(2x - 1) \ge {\log _{\frac{1}{5}}}(x + 3)\)
f) \(\ln (x + 3) \ge \ln (2x - 8)\)
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)