Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 6 2018 lúc 10:39

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 9 2019 lúc 14:21

Đáp án A

Ta có y ' = − 1 x 2 = − 1 1 . 1 ! x 2 ; y ' ' = − 2 x 3 = − 1 2 . 2 ! x 3 ; y ' ' ' = − 6 x 4 = − 1 3 . 3 ! x 4 .

 Dự đoán y n = − 1 n . n ! x n + 1 * . Chứng minh mệnh đề (*):

* Với n=1 thì * ⇔ y ' = − 1 x 2 . Khi đó (*) đúng.

* Giả sử (*) đúng với  n = k , k ≥ 1 , tức là  y k = − 1 k . k ! x k + 1 .

Khi đó y k + 1 = y k ' = − 1 k . k ! x k + 1 = − 1 k . − k + 1 . k ! . x k x k + 1 2 = − 1 k + 1 . k + 1 ! x k + 2 . Vậy mệnh đề (*) cũng đúng với n=k+1 nên nó đúng với mọi n.

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 2 2019 lúc 2:33

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 11 2017 lúc 9:31

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 12 2017 lúc 4:15

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 3 2017 lúc 17:33

Đáp án A

A sai vì hàm số y = x 3  có y ' 0 = 0  nhưng không đạt cực trị tại x = 0

B sai vì hàm số y = x 4 có y ' 0 = 0 , y ' ' 0 = 0 đạo hàm và có đạo hàm cấp hai tại điểm  x 0  thoả mãn điều kiện f ' x 0 = f ' ' x 0 = 0  thì điểm  x 0 nhưng không đạt cực trị tại x = 0

C sai vì “Nếu f ' x  đổi dấu khi x qua  x 0  thì điểm  x 0  là điểm trị (cực đại và cực tiểu) của hàm số  y = f ' ' x

D sai vì “Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm  x 0 thoả mãn điều kiện f ' x 0 = 0 ; f ' ' x 0 > 0  thì điểm x 0 là điểm cực đại của hàm số  y = f ' ' x

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 6 2018 lúc 9:57

Đáp án A

Mệnh đề 1) sai vì f ' x 0 = 0  chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại  x 0  

Mệnh đề 2) Sai vì khi    f ' x 0 = f ' ' x 0 = 0 có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại  x 0 .

Mệnh đề 3) sai vì f ' x  đổi dấu qua điểm  x 0  thì điểm  x 0  có thể là điểm cực đại hoặc điểm  cực tiểu của hàm số.

Mệnh đề 4) Sai vì trong trường hợp này x 0  là điểm cực tiểu của đồ thị hàm số.

Bình luận (0)
PT
Xem chi tiết
H24
1 tháng 3 2017 lúc 10:31

\(\sqrt[n]{y}=4x+1\)

\(y^{\dfrac{1}{n}}=4x+1\)

đạo cấp 1

\(\dfrac{1}{n}y^{\left(\dfrac{1}{n}-1\right)}=\dfrac{1}{n}\sqrt[n]{y^{\left(1-n\right)}}=4\)

thay y=(4x+1)^n vào

\(\dfrac{1}{n}\sqrt[n]{\left(4x+1\right)^{n\left(1-n\right)}}=\dfrac{1}{n}\left(4x+1\right)^{\left(1-n\right)}\)

từ đó: \(y'=\dfrac{4}{\dfrac{1}{n}\left(4x+1\right)^{\left(1-n\right)}}=4.n\left(4x+1\right)^{n-1}\)

Có đúng không: cấp n có thể phải làm lấy vài cái--> quy luật nào đó

Bình luận (0)