Biết F(x) là một nguyên hàm của f ( x ) = cos 2 x và F ( π ) = 1 Tính F π 4
A . F π 4 = 5 4 + 3 π 8
B . F π 4 = 3 4 - 3 π 8
C . F π 4 = 5 4 - 3 π 8
D . F π 4 = 3 4 + 3 π 8
Biết F(x) là một nguyên hàm của hàm số f(x)=sin2 x+cosx. Giá trị F(π/2)-F(0) bằng
A. 2.
B. 1
C. -1
D. 4.
Biết F(x) là một nguyên hàm của hàm số f(x) = sin3x.cosx và F 0 = π . Tìm F π 2 .
A. F π 2 = - 1 4 + π
B. F π 2 = 1 4 + π
C. F π 2 = - π
D. F π 2 = π
Câu 1 : Tính thể tích vật thể tròn xoay khi quay hình phẳng (H) giới hạn bởi các đường y = x3 , y = 0, x=0, x=1 quanh trục hoành
Câu 2 : Biết F(x) là một nguyên hàm của hàm f(x) = sin2x và F(π/4) = 1. Tính F(π/6)
1.
\(V=\pi\int\limits^1_0x^6dx=\dfrac{\pi x^7}{7}|^1_0=\dfrac{\pi}{7}\)
2.
\(F\left(x\right)=\int sin2xdx=-\dfrac{1}{2}cos2x+C\)
\(f\left(\dfrac{\pi}{4}\right)=1\Leftrightarrow-\dfrac{1}{2}cos\dfrac{\pi}{2}+C=1\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\dfrac{1}{2}cos2x+1\Rightarrow F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}\)
Cho hàm số F(x) là một nguyên hàm của hàm số f ( x ) = 2 cos x - 1 sin 2 x trên khoảng 0 ; π . Biết rằng giá trị lớn nhất của F(x) trên khoảng 0 ; π là 3 . Chọn mệnh đề đúng trong các mệnh đề sau?
Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 1 + sin 2 x với x ∈ R { - π 4 + k π , k ∈ } . Biết F(0)=1,F( π )=0, tính giá trị biểu thức P = F ( - π 12 ) - F ( 11 π 12 )
Biết F(x) là một nguyên hàm của hàm số f x = s i n 3 x . c o s x và F 0 = π . Tìm F π 2
A. F π 2 = - 1 4 + π
B. F π 2 = 1 4 + π
C. F π 2 = - π
D. F π 2 = π
Cho hàm số F(x) là một nguyên hàm của hàm số f x = 2 cos x − 1 sin 2 x trên khoảng 0 ; π Biết rằng giá trị lớn nhất của F(x) trên khoảng 0 ; π là 3 . Chọn mệnh đề đúng trong các mệnh đề sau?
A. F π 6 = 3 3 − 4
B. F 2 π 3 = 3 2
C. F π 3 = − 3
D. F 5 π 6 = 3 − 3
Cho F ( x ) = cos 2 x - sin x + C là nguyên hàm của hàm số f(x). Tính f ( π )
A. f ( π ) = - 3
B. f ( π ) = 1
C. f ( π ) = - 1
D. f ( π ) = 0
Biết F(x) là một nguyên hàm của hàm số f(x)= e 2 x và F(0)=3/2. Tính F(1/2)
A. F(1/2)=1/2 e+2
B. F(1/2)=1/2 e+1
C. F(1/2)=1/2 e+1/2
D. F(1/2)=2e+1