Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 5 2019 lúc 2:25

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 3 2017 lúc 10:27

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2019 lúc 7:47

Ta có:

 

Đặt t= logba-1 > logbb -1=0 ,

khi đó:

  P = 2 t + 2 t 2 + 3 t = f ( t ) f ' t = 2 . 2 t + 2 t . - 2 t 2 + 3 = 3 t 3 - 8 ( t + 1 ) t 3

F’ (t) =0 khi 3t3-8( t+1) =0 hay t= 2.

Suy ra Pmin =f(2) =15

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 9 2019 lúc 14:09

Chọn D.

Ta có: 

Đặt t = logba – 1 > logbb – 1 = 0; khi đó:

Ta có: 

Và f’(t) = 0 khi 3t3 - 8( t + 1) = 0 hay t = 2.

Suy ra Pmin = f(2) = 15

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 5 2017 lúc 14:11

Chọn D.

Bình luận (0)
HT
Xem chi tiết
NL
16 tháng 3 2022 lúc 15:42

Ủa số thực âm hay không âm vậy em?

Bình luận (1)
NL
16 tháng 3 2022 lúc 16:05

Đặt \(a+b+c=p\) ; \(ab+bc+ca=q\) ; \(abc=r\)

\(\Rightarrow p^2\ge3q\)

Từ giả thiết: \(4q=9r+1\)

Áp dụng BĐT Schur bậc 3:  \(r\ge\dfrac{4pq-p^3}{9}\)

\(\Rightarrow4q\ge4pq-p^3+1\Leftrightarrow p^3-1+4q-4pq\ge0\)

\(\Leftrightarrow\left(p-1\right)\left(p^2+p+1-4q\right)\ge0\)

Nếu \(p< 1\Rightarrow p^2+p+1-4q\le0\)

Mà \(p< 1\Rightarrow1>p^2\Rightarrow0\ge p^2+p+1-4q>p^2+p+p^2-4q\)

\(\Rightarrow2\left(p^2-2q\right)+p< 0\) (vô lý do \(p^2\ge3q\ge2q\))

\(\Rightarrow p\ge1\)

Vậy \(P_{min}=1\) khi \(a=b=c=\dfrac{1}{3}\) hoặc \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\) và các hoán vị

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 6 2018 lúc 13:53

Bình luận (0)
LB
Xem chi tiết
LP
18 tháng 5 2023 lúc 20:33

Ta thấy \(ab\le\dfrac{a^2+b^2}{2}=1\) và \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\). Áp dụng BĐT B.C.S, ta được \(P=\dfrac{a^4}{ba^2+a^2}+\dfrac{b^4}{ab^2+b^2}\) \(\ge\dfrac{\left(a^2+b^2\right)^2}{ba^2+ab^2+a^2+b^2}=\dfrac{2^2}{ab\left(a+b\right)+2}\ge\dfrac{4}{1.2+2}=1\)

ĐTXR \(\Leftrightarrow a=b=1\)

Vậy GTNN của P là 1 khi \(a=b=1\)

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 6 2017 lúc 18:21

Bình luận (0)